National Archives and Records Administration

8601 Adelphi Road
College Park, Maryland 20740-6001

REFERENCE COPY OF TECHNICAL DOCUMENTATION FOR

ACCESSIONED ELECTRONIC RECORDS
(Copied: August 2,2006)

National Military Command System Information Processing System 360
(NIPS 360 FFS), Volume I
User’s Manuel 1 July 1971

RG 218 Records of the U. S. Joint Chiefs of Staff

The National Archives and Records Administration (NARA) has been accepting electronic
records into its holdings since the early 1970s. Technical documentation has accompanied
each transfer of electronic records. The documentation is necessary to understand the

meaning of the digitized bits of information within the electronic records.

Over the decades, NARA has had different procedures for compiling technical
documentation into an organized unit for researchers, and different expectations regarding the
content and extent of any NARA-produced portions of the documentation. Consequently,
the structure, organization and contents of the documentation reflect the procedures in place
when the technical documentation was compiled and arranged and may include out of date
addresses, telephone numbers, or other items of unrevised information related to the agency
that created or transferred the documentation and electronic records to NARA, to the NARA
unit that processed these materials, or to the physical media of the electronic records files.

In creating the reference copy of the documentation package, NARA staff have selected from
the technical and/or supplementary documentation available for this series or file(s). We have
annotated or highlighted the table of contents that follows to indicate which portions of the
full documentation for this series or file are included in this reference copy of documentation.
Any materials not included here are available upon request. Any user notes prepared after
the table of contents was prepared appear before the table of contents. This documentation
will differ in structure, organization and contents from technical documentation for other
series or files of accessioned electronic records. The readability and visual quality are also
variable.

NARA’s web site is http://'www.archives.gov

http:http://www.archives.gov

® NATIONAL
MILITARY

"~ COMMAND
SYSTEM
SUPPORT
CENTER

ﬂ | DEFENSE
| COMMUNICATIONS
{ . AGENCY

Approved for public
release; distribution
¥ is unlimited.

CSM UM 15B.68
VOLUME |
1 JULY 1971

NATIONAL MILITARY COMMAND
SYSTEM INFORMATION
PROCESSING SYSTEM

360
FORMATTED FILE SYSTEM
(NIPS 360 FFS)

USER'S MANUAL

 INTRODUCTION TO
FILE CONCEPTS

RECORD OF CHANGES

CHANGE
NUMBER

DATE ENTERED

SIGNATURE OF PERSON MAKING CHANGE

NATICNAL MILITARY COMMAND SYSTEM SUPPORT CENTER
Computer System Manual Number CSM UM 15B-68

1 July 1971.

NMCS_INFORMATION PROC
360 _FORMATTED FILE SYSTEM

User's Manual

Volume 1 - Introduction to File Concepts

Submitted by:
JOHN M. STALLARD
NMCSSC Project Officer

REVIEWED BY.: APPROVED BY:

R.E. HARSHBARGER ~ BRUCE MERRITT

Technical Director Colonel, USaA
NMCSSC Commander, NMCSSC

Copies of this document may be obtained - from the Defense
Documentation Center, Cameron Station, Alexandria, Virginia
22314. ‘

This document has been approved for public release and sale:
its distribution is unlimited.

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 - Price $1.25
Stock Number 0805-0013

ACKNOWLEDGMENT

This manual was prepared under the direction of the
‘Chief for Programming with general technical support
provided by the International Business Machines Corporation
under contracts DCA 100-67-C-0062, DCA 100-69-C-0029, DCA
100-70-C-0031, and DCA 100-70-C-0080.

Section Page

ACKNO"VLEDGP’IENT......'..0..0........-0...'. ii;

ABSTRACT.Q.....O....‘....O.Q..‘........... Vii

INTRODUCTION...'..'.....l.I.........0'.....
System ComponentS..ceccsssccssscscscccccsscce
Interrelation of ComponentS.:eiescecevessse

e
*®
O™
W

SYSTEM CONCEPTS.eececococcscssccsscssscscsse
General File OrganizatiONeeeececesceccceassce
Data Record OrganizatiONecessecvesecscacocee
Data Record ElementS.ceececcccscsscssccssse
Data Record Element HierarChVe.eeeeesoesoee
Fixed Seticececceccccscsssssnssssssasasssse
PeriodiC Seteeeececcesscsssssscsscsssssscses
Variable Setooooo'oooo‘ooooooc.ooo-c-coooooo
Data Record IdentificatioOnN..ceeccesssceses
Data Record Organization SUMMAYY..eceecsesse
Data Value MOAeS.eceeseesssacsssssscssasnas
Numeric D’].Ode...oiooooooooooo-oooooooooooon
Alphameric MOA€.seeeaeecssossossscscsccossces
Geographic Coordinate Mode..eeccescscccces
Data Value COnNversSiON.cccecsesescoccsossossccs
Data Value Editing.ccecccecccsoscescscscsocccce
General Language SpecificationS.cececeeceses
Definitions......0..l.O.....‘Q0.0..'..O...
Language Format..cecececececsccoscecscscoccane
NIPS 360 FFS Language ContentS.ccceecccccee
NIPS 360 FFS Reserved WOrdS.ecesceccssssscee

MO N

o o o 8 o o

NDNDNDDNDN
LOWOWOOODINAAN

NN NDNOANN NN D NN N
® o o & e ¢ s & e o e & & o
AU B WWWWN NN

SYSTEM USE.ceeeeceosccscocssssccsscoscsscscsocsce
Cataloged ProcedUreS..ccececcccsssscscscocscs
Development of Conversion TableS...ccecee
Development of Conversion Subroutines....
Assembly Language RoutineS..eeeececcecoscscs
COBOL User SubroutineS...ceessccecsacioses
Definition of Edit MaskS.ceeeeoecescccccee

SAMPLE NIPS 360 FFS DATA FILE.ceceoscscose
General File OrganizatiON.ceecceceessscossce
Record Element DescriptiON.ccceccicecscesece
Subroutine/Table DescriptionN..ccceceeacas
. Table - RCMDS..;-.-coooooc-o.oco-ouoooo-co
Table - OCMDS...‘0.............'.....'0..
Table - CTRYS.........aaoooooooo-oooo-ooo

DB B ALLE WWWWWWww
e & o o o o

WWwWwwWwN

® e =8

LN

CONTENTS

Page

Table - ACT‘]S..-...-...:‘ooooooo.oo..o--_o 50
Table-UNIJVS...o.oo-no-.ooo'oou-oco-.c.o Sl
SubrOUtine-DTGIS....................... 52
Subroutine = DTGOS.eiccecsscesosassscsase 53

GLOSSA-RYOQC...l.'.l....'...'......‘l.l‘.. 54

APPENDIX : '
' Physical Description of the NIPS 360 FFS

Data File and File Format Table.cceeeecoes
Data Set OrganizatiON..csecececscscccccssnse
Data File ReCOYrAS.iceceesosccsescsscccscnscae
File Format Table ReCOrdS.icececseccscssccsoecs
Classification ReCOrd..ccecescecsccccssccses
Data File Control RecOYd.ceeesecoccecccsass
Element Format RecCOrdS.icesceccscscnsssosnse
Continuation Record TechniquesS...ceseceses
Continuation Records for the FFT Control
RECOYA e eeoeoesosssoncssssssossssssssasansas
Continuation Records for Group Format

ReCOI.‘dS........-.--........‘.-.............

* o o o o o
WWwWwwww
¢ o o o o

Cn s W N

I Y R TR TR N VI
-

.
w
.
1+
.
N

DISTRIBUTION.....‘.....................C..

DD FORM 1473....‘..».‘.Q'..'...’...........

ILLUSTRATIONS

Pigure , Page

1 NIPS 360 FFS5 Data Record Organization ' 10 -

ABSTRACT

This volume presents System Concepts and System Use; it
shows a sample NIPS 360 FFS Data File, the Glossary of
. Perms, and a description of the NIPS 360 FFS Data File and

File Format Table.

The NIPS 360 is the total system composed of the S/360
hardvare and S/360 Operating System (0S) wused to support
NIPS 360 FFS software. ‘

This document supersedes CSM UM 15A-68, Volume I.

Other volumes in this series are:

CSM UM 15B-65 Vol 1II - File Structuring {FS)
‘ Vol III - File Maintenance {(FHN)
Vol 1V . - Retrieval and Sort Processor (RASP)
Vol V "= Output Processor (OP) ‘
Vol VI - Terminal Processing (TP)

Vol VII - Utility Support (UT)
Vol VIII -~ Job Preparation Manual

Vol IX - Error Codes
TR 54A-70 - Installation of NIPS 360 FFS

CSM GD 15A-58 - General Description

vi

SECTION 1

INTRODUCTION

This volume is divided into five sections. Section 1
presents a general introduction of the concepts and
applications of the NIPS 360 Formatted File Systen.

Section 2 discusses the concepts of data storage in a
formatted file, the methods used = for data“’
validation/conversion, and the general language

specifications employed.

Section 3 discusses the method by which the systen
_operates and procedures used 1in developing the data
validation/conversion routines which are defined by the user

for specific file applications.

Section U4 defines a sample data file which will be used
in exanmples throughout the systea documentation.

Section 5 contains a glossary of terms used in the
documentation.

Appendix A <contains a detailed explanation of the
physical layout of NIPS 360 FFS lata set whlch is the user's

data file.

i

1.1 System-Components

The NIPS 360 FFS 1is made up of several relatively
independent components, each of which performs a function in
relation to data files of the system. The total complex of
components, working together, provides the user with the
abllxty to perform the complex file processing job required
in modern information managament systems. Although
comprehensive descriptions of each of the components are
presented in the appropriate volumes of the NIPS 360 FFS
User's Manual, a brief introduction to each is 1nc1uded in .

/

INTRODUCTION TO FILE CONCEPTS

this section, since reference is made to the components in
establishing the file processing and language rules covered
in this document.

de

b.

Ce

Eile Structuring (FS) Compopeat - This component
establishes the necessary communications media
required by the balance of the system in data file
processing. This comaunications media is called
the File Format Table. Simply stated, a tabular
array of the essential attributes of each of the
user-described data elements is created by the
component. This array 1is stored as part of the
data file and is accessed by the other components
when processing user language statements. :

File Maintenance {FM) Component - This component
generates and/or updates the user's data files
Several user langqguages are provided which permit
the: analyst to specify data validation procedures,
logical data examination and/or manipulation, and
sumnmarization. Although the normal output of the
process is a data file in updated form, the analyst
may request = additional "auxiliary" output files
which are created as a by-product of the
maintenance function.

Retrieval and Sort Processor (RASP) -~ The Retrieval
component is an analytical tool used to extract
information from one or more data files. This
component has ~ the capability to seguence the
extracted information in a variety of ways
determined by the requirements of the final output

report to be produced.

Output_Processor_ {OP) Componepnt - This component is
used for formal report production and provides a
convenient method of listing, summarizing,
formatting and counting data elements. Control
mechanisms are provided which permit preparation of
reports of extremely complex structure. The data
source used in this report production may be either
a data file, or the answer set produced by the RASP

component.

e g i L

e.., Terminal _Processing _{IP) - - This component is
actually composed of three major subsets in the
current version of -the system. The first 1is the
programs required to interface with the graphic
display devices. As such, the system user |is
relatively unavare of its existence. The second is
the Quick Inquiry Processor (QUIP), which provides
the user with the capability to interrogate data
bases. Punctions performed are similar to those
performed by RASP and OP. This capability may be
utilized £from the batched job stream as well as
from terminals. The third major subset of this
component 1is Source Data Automation (SODA) which
provides the capability of maintaining data files

from terminals. Input data may be edited,
corrected, and processed with prestored FM 1logic
statements.

f. Utility Support_ {UT) Programs This is a collection
of general purpose, utility programs which may be
utilized by the analyst in the performance of his
.job. Significant among the varied capabilities
provided, is the ~ data conversion function
acconplished by a set of programs of this
component. This capability provides the simple and
almost automatic method by which the user analyst
may directly convert a 1410 NIPS data base to NIPS

360 format.

Each component mentioned above is discussed in detail in a

separate volume of this manual ({see listing in the
Abstract).

1.2 Interrelation of Componants

Because of the flexibility of the system,; it is
difficult to establish specific relationships betwean the
various components. The following logical flow of
information through the system should be considered a
"typical"™ or normal example; however, it must be clearly
understood that the example is no way restrictive. Host of
the system components may be used in combination with other
Components to build complex system functions. The various

INTRODUCTION TO FILE CONCEPTS

:logical relations will become more apparent . to the user.

analyst as he follows through the detailed descrlptlons of
the various components.

FS accepts the user's description of the data elements

:making up the data file in punched card form. Output fronm
the component is the File Format Table (FFT) which defines
‘the structure of the file to be formed. Since the FFT is an
.actual physical part of the data base, file initiation is

performed by this step.

. FM accepts the FFPT as a part of its input, together with

Vtransactlon data the user desires to place in his file.
-Using the user's instructions (logic statements), it

performs the actual update function which results in the
updated (or new) data file. Paralleling this process,
various forms of "auxiliary" output may be produced under.
user control.

The retriever may then be wutilized to extract.
information from the data file. The result of this step is
the creation of two data sets: one containing the records
extracted from the data file, and the other consisting of
the sort or sequence control fields the user specified as
desired for answer ssquencing. A standard sort 1is applied
to the sort fields, and the resultant file is retained along
with the data file <created by the retrieval operation.
Since the sort field file includes "pointers" back to the
data file, a direct access technique of recovering the
retrieved data is applicable.

This composite of two files is then passed to the Output
Processor, which by applying user supplied instructions
provides the desired final report., Note that the output
processor may accept a data file directly, rather than first
applying the retrieval process. This technique is useful
vhen the seguence of the output in the final report is not
critical or when it is the same as the original sequence of
the data file.

—

System formatted output may be obtained with the Quick
Inquiry Processor (QUIP) which can also perform a retrieval
function. Using either a data file or the results of a

)

retrieval rum as a data source, output reports are quickly
and simply prepared.

The TP component utilizes local 2250 and 2260 devices
and remote 2260 or 1050 terminals as input/output units.
Data files may be queried and reports formatted or the files
nay be updated. Dutput data may be reviewed in a
conversational mode at the terminals or may be directed to
printers. This processing will generally parallel the
processing by other system components. ‘

With this brief introduction, the rest of this volune
addresses the general concepts applicable to the total
system, and generally provides those common guides required
for use of any component. ’

INTRODUCTION TO FILE CONCEPTS

Section 2

SYSTEM CONCEPTS

NIPS 360 FFS 1is a generalized file-handling system.
Using languages which have been specifically designed to
support the requirements of the users of the various
components, the analyst can define the capabilities to
process a specific data file. This section presents a brief
outline of the concepts of a NIPS 360 FFS data file, the

‘method of handling data elements, and the general system

language specifications.

2.1 General File Organization

A data file created by a user with NIPS 360 FFS 1is a
collection of information pertaining to a common area. The
file consists of records, . each of which contain data
describing the attributes of a single subject. For example,
the sample file presented in section 4 is a data file
containing information describing the status and disposition
of all military units in the armed forces. Each record in
the file contains data which completely defines a single
unit. Thus the file is a collection of records vwith an
order determined by a unit jndentification code.

Fach record in a data file has a common format. This
format is defined by the user and communicated to the system
through the use of the FS component. The format of a file
refers to the format of data records in a specified file.
Bach location in a record, where a data value is stored, 1is
called an element of the record. ¥hen the file is being
designed, the user assigns a mnemonic name to each elenent
in the record. The collection »f element names, along with
their functional relationship, constitute the format of a
record and hence the file itself.

The complete description of a file?'s format |is
maintained in the FFT which is - generated by the FS
component. ~ During file processing, the user states his
problem using the mnemonic element names to reference data
locations in a record. The syster translates these names
through the FFT into internal code allowing access to actual

record data.

Examples of usagé of the various concepts covered in the
following subsections are provided by Section 4, Sample NIPS

360 FFS Data File. :

2.2 . Data Record Organization

2.2.1 Data Record Elements

The locations in a record, where data values are stored,
have been defined as elements of the record. An individual
element is called a field. This is the term used to
identify a portion of the data record where a single data
item, such as an individual'’s name, may be stored. During
the file definition process, this field is given a mnemonic
name which is stored as. an entry in the FFT. When the file
is processed, the use of the field nane in a 1language
statement permits the user to operate on the data contained
in a specific location of all records in the file. All the
jndividual elements in the data record are defined by the
user as fields and given unigque names. This provides the
system with a complete map of the data organization in a

record.

"Occasionally, several adjacent fields in a data record
have a logical relationship, and it would be desirable to
operate on them as a single item with one name. In such a
case, one or more adjacent fields may be defined together as
a group with a new name supplied. An example of this would
be the case where two fields have been defined. to contain an
individual®*s last and first name, respectively. -

http:r.eco.rd

INTRODUCTION TO FILE CONCEPTS

These two fields could be defined together as a group for
one-step data manipulation. :

2.2.2 pata Record Element Hierarchy

In conventional information systems, the record is the
basic unit of “information containing a fixed number of
element values. The NIPS 360 FPFS permits the user to define
a data record with a hierarchical relationship among the
elements of the record. At the lover level, the record may.
contain a variable number of data values for each element. .
The term, set, is introduced to define a collection of data
record elements at the same level.

The fixed set correspoads to the first. level in data
record hierarchy. The fixed set is a collection of elements
{fields) which need only one data value to satisfy
requirements. An example of a fixed set element would be
the field (element) of the sample file in Section 4, COMDR,
‘which contains the Commanding Officer's name. . Since each
record of this file contains the information on a single
military unit, there will be only one Ccommanding Officer.

2.2.2.2 Periodic Set

In a data record there may be "a collection of data
elements which may assume more than one set of data values
within the record itself. The collection of data elenments
is called a periodic set. A periodic set is a collection of
data elements which are logically related and may contain
multiple data entries, all with the same format.

A collection of data values whose format 1is defined for
the periodic set is called a subset. The number of subsets
for a periodic set in a data record is under the control of
the user. A point of importance is that each subset 1is a
collection of data with the same format as all other subsets
of the same periodic set.

The NIPS 360 FFS allows the user to define a record
format which consists of one fixed set (from 1 to 100
fields) and up to 255 different periodic sets {each of which
‘may have from 1 to 100 fields defined). (See figure 1.)

2.2.2.3 Variable Set -

The NIPS 360 FFS permits the user to define one or more
variable sets for a data record format. The variable set is
at the same level 1in the record as a periodic set. 1Its
purpose is to allow the storage of variable 1length data,
vhich cannot be formatted, in the record. Only one element
is defined for the variable set which has the
characteristics of a field with unlimited length. Data may
be added to or deleted from the variable set of a data
record. Hovever, retrieval operations against the file may
not use the contents of a variable set as a criterion for

record selection.

'2,2.2.u Data Record Identification

‘Since data records identify a unique subject, a unique
record identification must be provided. The user nust
define one or more elements of the fixed set to be used for
‘record control. The data value(s) found in this record
element (s) must be unique throughout the file. Very often
the data, and the elements used for such a purpose, are
known as the Record Control Group, Record ID, or Record Keye.

2.2.2.5 Data Record Organization Summary

This subsection uses fiqure 1 as a graphic example for
the points covered. Shown at the top of the fiqure is a
block diagram representing a data file which may consist of
a variable number of records. For purposes of illustration,
one of the records in the file is "broken out" to show its
possible configuration. The data format in this record is
the same as that used by all records in the file. However,
the data contents of the record, as well as the number of
data entries, may differ from record to record.

0t

uogzezyuebio prooey v3eqd Sdd 09€ SJIN

.t .B.FJ

OATA
RECORD |

Y

Sl

‘TT< f1~

[N FF¥F €l VAR

FIXED SET

T

UNFORMATTED
- £

[4
VARIABLE SET

DATA
RECORD 2

I ~
/7
/ ! y » \\ ~ ~
7/ / i
/ AN
1 \
/ \
' Y
/ [P P
/ " 12 13
AA BBC FF
B8A GBF KK
Bc NIK HH
1A JAN GG
cN TFG n

PERIODIC SET 1

i T A T .
DATA DATA
RECORD 3 RECORD "N’
- sk G > oS
~
~
~
e
N
S
[[14 [[
R] 22 n 3z 33 34 s
xx AG A AA DEF GH 1
Yy SS B [, F] [<99} M) 2
PERIODIC SET 2
C H xiJ NI 3

RERIODIC SET 3

SLJdIONOD ITTId Ol NOILONAGNLNI

This file has four elements defined as a fixed set.
These elements were defined as fields during FS with names
associated with each field. . For example, the names Fl, F2,
F3, and F4 are used. When the record is created by the PN
component, the user can cause data from incoming transaction
records to be placed in the fixed set of the record by using

the field name as reference.

The file record shown in figure 1 has formats defined
for three periodic sets. The format and data used in
Periodic Set 1 will be used for illustration. When the user
defines the file format (data record), threse logically
‘related elements could contain mnultiple groups of data
values within a single record. Therefore, during the
definition of the fields P11, P12, and P13, the user defined
that the fields be treated functionally as Periodic Set 1.
This then established the common format which groups of data
values would follow as they are entered into the record.
Each group of data values, conforming to the format for
Periodic Set 1, is referred to as a subset. The number of
subsets contained in a record's periodic set 1s never
defined by format. For Periodic Set 1, as shown in figure
1, there exists five subsets of data. When NIPS 360 FFS 1is
processing file records, a single subset in a periodic set
is referenced at one time. Therefore, the use of the field
name, Pl2, in a retrieval statement has sequential access to
five different data values in one record.

_ In the variable set illustrated, no format is
established for any data values., However, if a data file is
to have records containing variable sets, this nmust be
defined 1in the FS run to establish internal pointers in the
record. Any data that is placed in the variable set for a
record is paintained by internal pointers describing to the
system, the actual location, and volume of information.

The sizes of data records in a NIPS 360 FFS data file
may vary. If a file consists only of a fixed set, then all
records in the file are of constant length. However, a data
file defined with one or more periodic sets for its records
Will most likely have record lengths that vary considerably.
This occurs since the periodic sets of some records will
contain more subsets of data than others.

11

INTRODUCTION TO FILE CONCEPTS

~ The maximum size of a data record is also a variable.
Por the Output Processor, File Maintenance, and Quick.
Inquiry Processor components, the systen allocates space
called a "processing block"™ to contain the part of the data
record processed during the run. The core allocation size
for the processing block is variable; the size allocated is
determined by the specific component. The default size
allocated by F# 1is 16,000 bytes, and the default size
allocated by QUIP is 10,000 bytes. The analyst 1is thus
assured the capability of processing conmplete records of a
size up to 10,000 bytes in QUIP, and up to 16,000 bytes in
FM. This coastraint is a "worst case" condition, since the
system only loads that portion of the file record that 1is
being processed during the job, causing the record to be
loaded. Loading is performed on a set basis, so that a job
requiring examination of data from Periodic Sets 1 and 2 of
a file requires the system to load the fixed set, Periodic
Set 1, and Periodic Set 2. : :

Effectively then, the analyst may choose to constrain
his file record size to 10,000 bytes and avoid any further
considerations of processing requirements related to core
size. dhen using FM, the analyst can determine the size of

the processing block by putting
PARM='PBSIZE=nK"

(vhere n can range fron 1 to 99) on the FM EXEC card.
Similarly, when using QUIP in the batch mode, the analyst
can enter PARM='PBSIZE=nK' on the QUIP EXEC card; (however,
because of design constraints, the QUIP processing block
cannot exceed 31K). For source direct QUIP runs against
ISAM files {this includes on-line QUIP), the syster will
compute the size of the processing block required (up to
31K) and allocate that size. If a file design logically
requires larger record sizes, the analyst may still process
that file just as long as the combination of sets he desires
to process in a single job can be contained within the
processing block allocation of the systen.

-
-

2.3 Data Value Modes

The user of NIPS 360 has the option of selecting
different modes by which data will be stored in the record
elements of the data file. During FS, each element in the
record's format is defined to hold 1its data value in a
specific mode. This mode selection specifies the internal
method by which data 1is stored. It -is necessary for
employing and limiting certain types of operations against
data during file processing. : :

‘2.3.1 Numeric Mode

Record elements {fields and groups) containing numeric
values, which will be processed using mathematical operators
(e<g., summations), should be defined as numeric mode.
Field elements defined as numeric are limited to a maximunm
of 10 integers within the range of +2,147,483,647.00.
Although correct processing can be performed, numeric fields
should generally not be defined within a group since systenm
efficiency will be impaired. Normally, all fields defined
as numeric, regardless of size, are stored in the data
record as binary words., This mode permits fixed point
binary arithmetic to be used by the system and allows full
use of the more efficient binary set of wmachine
instructions. When a numeric field is defined in a group,
the value contained 1in the field is represented as zoned
EBCDIC bytes. Required data conversions are made by the
system without user intervention. Note that a numeric field
defined within a group is initialized to EBCDBIC blanks. It
is the user/analyst responsibility to initialize these
fields to EBCDIC zeros during FM processing. Failure to
initialize these fields will result in data exception errors
when using these fields with arithmetic operators and data

value editing during output processing.

Any field or group defined as numeric mode will allow
output editing to be defined by the |user. This function
permits 1leading 2zero suppression, decimal point insertion,
and so forth. Subsection 2.5 discusses the use of the Edit

function in NIPS 360 FFS.

13

http:2,147.483,647.00

INTRODUCTION TO FILE CONCEPTS

The numeric node specifies that data values are to be
right-justified for a record element. This means that if a
numeric value is shorter than the defined element, the value
will be right-justified with =zero padding on the left to
fill in the rest of the allocated space. If the numeric
value 1is 1longer than the defined element, truncation will
take place on the left when the data is stored.

2.3.2 Alphameric Mode

Record elements {field and groups) which are defined as
alphameric mode, permit all characters of the EBCDIC set to
be stored as bytes. Data stored in this mode allows all
logical operations to be performed on them. However, they
may not be used as values in mathematical processing (e.g., -
addition, subtraction, etc.), nor may they be edited with a
user-defined mask during OP. '

Record elements defined as alphameric mode 1imply that
data stored in them is left-justified. For example, if a
data value is shorter than the field or group where it is to
be stored, the value will appear 1left-justified 1in the
location with trailing blanks. If the data value is longer
than the field or group in the record, it will. be stored
with truncation occurring on the right. :

The system assumes the alphameric mode for all variable
sets in the data file.

2.3.3 Geographic Coordinate Mode

A special item mode designator, coordinate, is used for
cases where geographic coordinates are to be stored in the
data record for retrievals using the geographic retrieval
operators, Circle Search and Polygon Overlap. This mode nmay
be used for both field and group definitions, depending upon
the manner in which the coordinate values are stored. Each
term in a coordinate pair defines a point which will be.
stored as a binary word in the data record. A standard
system subroutine will be used automatically to translate
the «coordinate values to and from a binary word format when

14

the standard external format is followed. The user nay
define the coordinate point containing both latitude and
longitude as a single field and the systenm will
automatically generate two binary words to hold the values
after conversion. He may also define the latitude value and
longitude values as individual fields and then define then
together as a <coordinate group. The standard external
format is shown below:

Latitude- opgitude
'Aamnx {5 bytes) BBBMMY (6 bytes)
AAMMSSX {7 bytes) BBBMMSSY (8. bytes)
where
= Latitude in degrees

Longitﬁde in degreés

Minutes

Seconds

Appropriate hemispheres.

If a user wished to define a coordinate value in his
record with the latitude and longitude as individual fields
with precision only to npinutes, he would define two
coordimate fields with lengths of five and siXx bytes,
respectively. Then the two fields would be defined as a

coordinate group.

If the user wished to define a single field containing

a coordinate point with precision to seconds, he would
define a.coordinate mode field with a size of 15 bytes.

The coordinate mode may be used for a group containipg
several fields and/or groups of coordinate data. This

e

INTRODUCTION TO FILE CONCEPTS

permits the use of a single name defining a line or area to
be used with the polygon overlap search operator in the NIPS
components. Such groups, however, are not subject to
automatic input or output conversion by the system. Only
field/groups whose external length is 5,6,7,8,11, or 15 wxll.
be automatically converted.

2.4 Data Value Conversion

The user has the capability of defining routines which
may be used to perform data value conversion as data 1s
placed into or taken from a record. bata may also b=
validated either as a transaction item or as it resides i
a record using this technique.

The conversion routines may be developed 1in two ways.
In one method, the user actually writes a subroutine using
one of the 05/360 programming languages to perform the

desired conversion process. The subroutine is written to
accept, through a calling sequence, the data item to be.
converted. It returns the converted data value to the

calling segquence when finished. The other method available
to the user is to develop a table consisting of a collection
of argument-function pairs of data. The argqument, being the
data to be converted and the function being the converted
data value, is supplied as a group on each source card.
Both methods have an appropriate cataloged procedure which
is used to develop the actual executable load modules using
- source statements as 1input. These resulting load modules
are placed on a predesignated library for use by all
components of the system. When the subroutines/tables are
developed by the user for an application, they are defined
for use in either input conversion or output conversion. In
addition, they are defined to accept data and supply data

with specific 1lengths and modes. An 1input .conversion
subroutine/table 1is used to acca2pt data input from either a
system work area, a transaction record during update

processing, or a gquery statement and produce a result
compatible for direct placement in a data record field or
group., An output conversion subroutine/table is used during
output processing to accept a data value from either a data

16

record element or system work area to supply the converted
result for output. :

The use of conversion subroutines/tables may be either
automatic or under control of the user through the 1language.
statements defining the particular. run. The following
comnents describe the methods by which the conversion

routines are called into action.

During FS each field and group in the record may be .
flagged with the name of an input and/or output
subroutine/table. This definition, at FS time will cause
the automatic use of the conversion routines whenever the
~field or group names so flagged are mentioned in the
lanjuage statements of the RASP, OP, and QUIP componentsS.
The user may negate their automatic wuse in a run by
associating a special term with the field or group name when
mentioned in a statement. Conversely, the user may override
the specified conversion subroutines/table and substitute
another one by provxdlng the new subroutlne/table name with

the field/group name in a statement.,

All components of the system which perform file
processing allow the wuser the capability to dynamically
state in his language statements the use of a conversion
subroutine/table for a particular field or group. Thus
conversion may be effected for special applications with a
data file. This technique also permits subroutines/tables
to be used for data validation or direct conversion in a
data record using the FM component. - :

2.5 Data Value Editing
edited

Numeric mode elements in a data record may be
during output processing._ This option permits the user to

suppress leading zeros, insert decimal points, and perfornm
other editing functions. To define the editing function
performed on a record element, the user constructs an edit
mask containing control characters. Special characters in
the mask indicate to the system the nature of the editing

operation.

INTRODUCTION TO FILE CONCEPTS

The user
in tvo different ways.

may define the editing function to the system
The first method is to

define an

edit mask for a record element when the file is structured
using the FS component., The FFT entry for this element will

then always carry the
components, If the edit

QUIP and OP will automatically use it

edit mask . for use
mask .is defined in this manner,

by the OP

whenever the record

element is referenced for output display.

The second way the user may define an edit operation is

to actually include an edit mask as a ,
element in the language statement for a particular

The procedure used to write an

with an
application.

literal associated

edit_ mask 1is

defined in subsection 3.4 of this manual.

So far 1im the

discussion

of edit masks, it has been

assumed that the data value to be edited has come from a

numeric mode record element.

different approach to data value editing as
from a

record element Rmay

However the user may employ a
follows, Data

be processed by an output

conversion subroutine/table and the result edited by a wuser

defined mask.

from the conversion subroutine is

Care must be taken to ensure that the output

" numeric so that it is

acceptable to the edit process.

2.6 General Language Specifications

Bach system component has its own language which is used

by the analyst to define the file processing

a computer run. Despite the
they may be easily learned by
basically similar and differ
problem. This section of the
introducing the terminology

functions for
nunber of different languages,
the analyst since they are
only in their application to a
manual is concerned only vith
of the languages. Each volune

of this manual will define the characteristics and use of
the associated language for that component.

2. 6.1 Definitions

The following
terms.

list defines

some elementary 1language

18

Statement

Operator

Connectors

Condition
Statement

Action ,
Statement

A contigquous string of characters,
generally considerd to be composed of the
alphameric set, and explicitly restricted
to exclude the special characters, blank,
comma, period, single quote, "at" symbol,
and ampersand.

Generally used synonymously with word.

A string of words separated by commas
and/or blanks. The period is explicitly
excluded from the body of a clause.

May contain one or more clauses and is
always terminated by a period.

A systen reserved word explicitly
directing an action. For example, LIST,
EQUALS, GREATER, THAN, SUM, etc., are all
considered operators. -

Generally restricted to the Boolean
connectors AND and OR.

A special case of the general category of
Statement, this form implies that the
user is requesting the system to test for
a specified condition. Implies the
existence of an action ; directive
statement, either explicitly or
implicitly stated.

A special case of the general category of
Statement, this form is a user request

for a specific system action, and may or
may not be preceded by a Condition

Statement.

2.6.2 Language Format

Several formats are cohmbnly‘used in systems work. They
are often identified by names such as free-format, comma-
format, and fixed-format. The preferred form generally used

INTRODUCTION TO FILE CONCEPTS

in this system is known as free-format. This format by
definition offers the following characteristics:

a. Words may be separated by either commas or blanks
or both in any combination, and in any number. .

b. Statements and/or clauses may run sSerially from
card to card, or more generally, from input record
to input record. Words may not be split between
records or cards.

Ce Statements may be 1initiated in any character
position of the input record, and may terminate in
any position.

d. Other than cases in which the sequence of the input
statements are related to the sequence of functions
required by the system, no sequencing requirements
are arbitrarily imposed.

Card columns 1-71 generally contain language statements.
Some components offer the capability of providing a card
sequence check if the user provided a sequence number of all
cards in his source deck in locations 73 through 80.

v Some of the components require a parameter string with

optional values in the string. Since interrogation of the
string is based on a positional relation and identification
of the field information is not feasible without this
relation, omitted fields must be clearly indicated to the
system, When this condition occurs, the basic punctuation

rule is changed:

Note: Words may be separated by one or more blanks,
or not more than one comma, With or without
multiple blanks. The notation "double comma®
indicates to the system that a field has been
omitted.

- The FPM component uses a language which deviates somewhat
‘from the conventions outlined above. Because 0of the power
and flexibility offered by the component, the language
resemnbles that of a computer's assembly language.

20

2.6.3 NIPS 360 FFS Language Contents

The words or terms used by the analyst to describe a
file processing function nust conform to the 1language
specification for the appropriate system component.,
However, all component languages may have an analogy
relating them to our own spoken language. For example, in
writing a statement to direct a processing function, the
vords used are similar to the subject, verb, object, and

. conjunctions in an English sentence. In all of the system

component languages, there are two basic types of vords.
First are the system reserved words vwhich are recognized as
indicating specific operations. The <combination of these
words in a statement define the logic to be used by the
system component. 1In an analogy to the English sentence,
these words would be considered the verb indicating the
action to be performed and/or the conjunctives indicating
the logical relationship of words.

The second major type of words in the NIPS 360 FFS
languages are those supplied by the user. These words could
be considered analogous to the subject and/or object of an
English sentence indicating what 1is involved in the
processing function and the result obtained. The words
supplied by the user are of several classes and are

discussed below:

a. Names —- Names are used by the analyst to reference
a file, record element or - field conversion
subroutines, conversion tables, and edit masks.

All names are formed under the following rule:

o A name may be from one to seven characters
with no embedded blanks or special characters.
The first character must be alphabetic. 1ll
remaining characters may be alphabetic or

numeric.
fo) Names for - data files ‘ and conversion
subroutines/tables must npot end with the

character zero. The user gquite often must
supply a data value to a system component
directly through the language statement. Two

21

de

INTRODUCTION TO FILE CONCEPTS

different options are available for this
approach, and such words are called self-
defining terms and literals.

self-Defining Terms -- A self-defining term is a
word made up of a string of characters with no
embedded blanks which is interpreted by the system
as a data value. The word is recognized as a self-
defining term due to its syntactical position with
respect to other words in a statement. An example
of self-defining terms is the folloéving words which
will be treated by the system as a data value:

454
Tank

Literals —- A literal is similar ia concept to a
self-defining term except that it is enclosed
within delineator characters to define its width.
The delineator used is the single gquote sign
(although some components allow the alternate use
of an "at" sign). The purpose of the delineator is
to allow the definition of data values containing
blank and/or special characters. Examples of
literals are:

‘1Heavy Tank!?
*F-105"

System_Work Areas -- Most components of NIPS 360
FFS have intermediate work areas which are used by
the analyst to store data values. These work areas
are defined in several wvays according to the
component concerned. Although they are reserved
words capable of recognition by the component being
used, they are used like nanmes. This 1is because
they function as the subject or object of a
sentence; i.e., they do not connote any action to
be taken, but merely are used to represent vhere
data may be found or stored. .

gigugggive Constants -- Some components of NIPS 360
FPFS permit the user of figurative constants ‘to

22

represent data values. These are reserved
words which stand for specific data values and may
be used in place of literals or self-defining terms
if appropriate. Figurative constant words may

be such as:

ZERO
BLANK

As an example of a NIPS 360 FFS language, the following
RASP component language statement is illustrated. This 1is
a conditional statement causing search of a data file for
gualifying records to be retrieved. The retrieval criterion
is indicated by user supplied data values in the statement

itself.
IF AREA EQUAL 'SOUTH VIETNAM' AND SERVICE EQUAL ARMY.

The underlined words are reserved words recognized by the
system to cause specific actions to occur, The remaining
words are user supplied and defined words indicating the
specific yualification for action. Due to the syntax of the
language, the system will interpret the words AREA and
SERVICE as data record element names. The word SOUTH
VIETNAM is a literal used to introduce a data value to the
"system through the source language. Likewise, the word ARMY
is a self-defining term used to supply a data value.

The special characters such as comma, blank, and period
are used by the different component languages for special
usage and have special significance to the system. The
mathematical operators, plus, minus, and equal symbols,
portray their normal math function in some uses.
Multiplication will be represented by the asterisk and
division by a slash. Parentheses are used to logically
group clauses. In addition to these direct and straight-
forward rules, the following special characters are used for

the indicated purposes.

Charactecr Use

(pound or number symbol) Used to delineate subroutine
(8-3 punch) names in the input source

INTRODUCTION TO FILE CONCEPTS

{Slash)
(g-1 punch)

~

$ (Dollar Sign)
(11-3-8 punch)

{Single Quote)
(5-8 punch)

& (Anmpersand)
{12 punch)

¢D# {descending sort tlag)

language f{other

than FS). Used
in double formn, negates an FFT
specification for a subroutine.

Used to separate numeric digits
when indicating partial field
notatione. '

Used as an wyniversal" match
character in comparison literals.

Used to delineate literals.
Used in double fora, negates

an FFT specification for a edit
maske

Used to identify a field name used
as an operand of a conditional
expression in place of a literal
or self-defining term.

Used to identify a field to be
sorted in a descending manner
in either QUIP or RASP.

optional use of selected special characters which permit.

compatibility with

1410 FFS source

statements 1S discussed

where applicable in each component volune of this manual.

2.6.4

This subsection contains a list of reserved words
system.

are interpreted by the

NIPS 360 FFS Reserved Words

which
They may not be used as

names in any language statements.

RESERVED_HORDS
A CLASS FINAL
ADD CLASSIF FIND
AFTER COMPUTE FOR
ALL COORD FROM

24

ALPHA
AND

ANY
ARE

AT
AVERAGE
BEFORE
BETWEEN
BINARY
BLANK
BLANKS
BT

BY

CH
CHANGES
CIR
CIRCLE

LINIT
LIST
LOAD
LT
LTE
MARK
HOVE
MUL
~ NE
NEQ
NLE
NLINES
NLT
NLTE
NO
NOGO
NOT
NOTE
NUMER
OF
OPDATE

*COUNT {N)
CREATE
DECIMAL
DELETE
DISK
DISPLAY
DIV
EARLIER
EDIT
EJECT
EQ
EQUAL
EQUALS
EXECUTE
FIELD
FIELDS
FILE

OR
OVERLAP
ovp
PAGEND
PARAM
PER
PERCENT
PRINT
PSCT
PUNCH
QUERY
RECORDS
REPLACE
SELECT
SET
SORT
SORTKEY
SPACE
START
STOP
SUB

FURTHER
GE

GO
GREATER
GROUP
GROUPID
GT

GTE
*HEADER {N)
HTOTAL

IF

IN
INITIAL
Is.

LATER

LE

LESS

SUBRT
*SUM(N)
SYSDATE
TAB
TABLE
TEST
THAN
THAT
THE
THEN
TITLE
TO
TRAILER
VSCTL
WITHIN
*WORK (M)
ZERO
ZEROS

INTRODUCTION TO FILE CONCEPTS

*NOTE

a. {N) stands for either a blank or the numbers zero through nine

b. {M) stands for either a blank or the nunbers one through nine.

c. The following name prefixes are not allowed: PSSQ, VSET,

VSZ.

The name, D, should not be given to a subroutine or
table because this is used to specify descending sort in

QUIP and RASP.

SECTION 3

SYSTEM USE

3.1 cataloged Procedures

When the analyst prepares a job using one of the systenm
components, two basic types of information are supplied to
the system to define its function, The first set of
information consists of job control statements written using
the 0S/360 Job Control Language (JCL). These statements are
interpreted by the S/360 to define the characteristics of
the job such as input/output devices required and the
nane (s) of the program{s) to be run. Refer to the IBH# SRL
publication, IBM System/360 Operating System-Job Control
Language (Form C28-6539), for a description of JCL. The
second set of information supplied consists. of source
statements written in the language of the required NIPS 360
FFS component which define the specific file processing

techniques.

To ease the requirement on the user that he supply all
the necessary job control statements whenever a system
component is used, cataloged procedures have been prepared.
These procedures are sets of previously written job control
statements which have been stored in a System Library. Each
procedure 1is given a name which is used by the analyst for
a particular job. The use of such a name in a JCL Execute
statement causes the system to automatically retrieve the
information necessary to define a job to the computer. In
the simplest case, a job using the cataloged procedures for

the FS component would appear as follows:

{1) ,//30BXYZ J0B (Standard Parameters)

(2) /7 EXEC XFS,ISAM=TESTER,LIB=TESTER
{3) //FS<SYSIN DD * '

(4) {FS language source statements)

{5 /* :

27

INTRODUCTION TO FILE CONCEPTS

Card 1 -- Is required for each.jobAsubmitted and must be
first in the input deck. It is kpnown as the JOB statement
and is used to give the job a name such as JOBXYZ.

Card 2 ~-- Defines the cataloged procedure used for the

The name XFS defines a set of job control statements
in the library necessary to support the execution of the
File Structuring Component. The remaining parameters
identify the name and type of file to be structured and the

name of the File Library.

job.

Card 3 -- Defines the location where the source input
language statements may be found. In this case, the
asterisk is a parameter which indicates to the system that

the source input immediately follows.

Is the source language statement {s) written by

Card 4 -~
define the specific functions desired from the

the user to
componente.

Card 5 -- Is a special JCL statement indicating the end
of the source statement deck.

The parameters entered on the execute statement (Card 3)
are known as symbolic parameters. Their function is to
dynamically alter the prestored procedures at execution
time. The values entered in this manner replace those that
vere defined when the cataloged procedure was placed in the

Procedure Library. .

3.2 Development of Conversion Tables

When the wuser has the occasion which warrants the
conversion of data values from one form to another and the
problenm lends itself to tabular conversion, the <cataloged
procedure XTABGEN may be used to easily generate such a
table. The input to the procedure XTABGEN consists of cards
each of which contain an argument-function pair of data
values. The argument is the data value which is to be
converted and the function is the data value resulting from
conversion. The procedure will accept these source cards
supplied by the user and build the table into an executable
load module capable of 1linkage with any NIPS 360 FFS

28

conponent. The load module table may be stored in a library
along with other tables, subroutines, retrievals, and RITs
(Report Instruction Table used by the OP component to direct
output processing). The name supplied by the user for the
conversion table must conform to system standards and be
unique din the library in which it is stored. The table may
be called by name for wuse with any file when it is

appropriate.

Information and examples on the manner in which the
procedure XTABGEN is used may be found in the Utility
Support Programs volume of the NIPS 360 FFS User's Manual.

3.3 Development of Conversion Subroutines

When conversion for record element data is desired, but
does not 1lend itself to a tabular approach, the user may
wish to write a subroutine to perform the ' conversion. The
subroutine may be written using any of the 0S5/360 supported
problem processing lanquages. The subroutine is compiled,
link edited, and tested by the user before inclusion in the
system. A cataloged procedure XSUBLDR is available to the
user for loading the subroutine (in load module form) into
a library with NIPS 360 FFS compatible linkage established.
Use of this cataloged procedure requires the user to have
the tested subroutine as an independent load module on any
library. 1Its location is defined to the cataloged procedure
XSUBLDR through a JCL statement. Description on the use of
XSUBLDR is found in the Utility Support Programs volume of
the NIPS 360 FFS User's Manual. '

¥hen writing the conversion subroutines, certain
conventions must be followed. The remainder of this section
describes such conventions. '

The user-written subroutine should be written as a
single root segment that 1is reuseable, and the calling
sequence for the subroutine from a system component should
follow standard 05/360 linkage conventions. Three
parameters are provided to the user routine. Parameter one
is the entry point to the system subroutine loader.
Parameter two points to the area P2 described below and
Parameter three is a cell for return code storage. '

Priea

I INTRODUCTION TO FILE CONCEPTS

P2 DC H *N? N = number of argument bytes including
trailing blanks or leading zeros

DC CLN ‘*....! | argument bytes

DS CLM M = function length

The arqument and function may be either alphanmeric,
binary full word, coordinate data or EBCDIC decimal ({a
particular subroutine 1is designed for a specific type of
argument and function combination). No boundary alignment
of argument and function areas can be assumed. The output
function area should be filled with 1leading zeros for
decimal data and trailing blanks for alphameric data.
Decimal data will have 'F' and 'D* signh zone bits.

The function output area immediately follovs the
~argument bytes. The high-order position of this area is P2
+ N + 2. Conversion routines must be written to accept
I variable length alpha, decimal or coordinate argquments. The
ﬂf output function size is fixed for a given routine and should
W always be completely filled. The combined lengths of the
i argument and function may not exceed 256 bytes.

! _

4 4 Upon return from the user routine, either register 15
” ~can contain one of the following return characters or the
o cell designated by parameter three can be filled:

| accordingly:

i S Successful

I M = No Match, umnsuccessful

§§ The subroutine 1loader entry point 1is provided to user
h routines so that they may request 1loading or 1linking to
E other routines. No idinput/output functions should be
| performed by the user routine. :

)

When the subroutine is placed om a Work Library, the
entry point name and the load module name (PDS member name)
must be the same. The names must be identical due to the

30

requirements established for use of the SUBLDR utility

programe.

3.3.1 Assembly Language Routines

The routine should use the following macro as its first
instruction.

SUBNAME FFSBEGIN BASEREG

This macro will generate the proper <CSECT and SAVE
linkage. Register 13 will point to a generated SAVE area
and should not be used by the conversion routine. Register
BASEREG will have been 1initialized as the routine base
register along with the appropriate USING statement.
Register 1 will point to the parameter address constant

§ list. When returning control, register 15 may contain the
return code as discussed previously and the following macro

used to return control.

FFSRETRN RC=(15)

‘Otherwise, the bYte indicated by parameter three must be
filled with 's? or 'M'. '

The following is an example of an ASSEMBLY LANGUAGE

subroutine:

//ASMSUB = EXEC ASMFCL,PARM.LKED='MAP,LIST,LET,DC!
//ASM.SYSLIB DD ‘

// DD DSN=FPFS.MACLIB,DISP=SHR

//ASM.SYSIN DD *

DTGOS START

*A DATE CONVERSION ROUTINE
* CHANGES FILE DATE FROM YYMMDDTTTT TO OUTPUT AS DDMMHYY/TTTT

*LOAD BASE REGISTER, SAVE CALLING PROGRAM REGISTERS, LINK CALLING PGHM
%) .

DTGOS FFSBEGIN 7
L 8,4 (1) "LOAD ADDRESS OF DUMMY SECTION

USING PARMLIST,S8 INIT REG 8

SR 6,6 ZERO QUT 6
LA 6,12(6) ADD 12 TO 6 PUT IN REG 6

INTRODUCTION TO FILE CONCEPTS

* L

sMOyE INPUT DATE TO WORK AREA, REFORMAT DD AND 1YY

«CONVERT TWO DIGIT MONTH TO SYMBOLIC THREE CHARACTERS

*RETURN AN 'S' SUCCESSFUL OR 'M' UNSUCCESSEUL IN REG 15

*
wyc DIGMNTH {(2) ,PARM1POS+2 MOVE MONTH WORK AREA FOR COMPARE
LA 5, TABLE LOAD ADDRESS OF TABLE INTO REG 5

ERROR

CLC
BE
LA
BCT
IC

DIGMNTH (2) ,0 {5)

FOUND
5,95 15)
6,L0O0P
15,=C*H*

COMPARE TWO DIGIT MONTH TO TABLE
IF EQUAL GO MOVE SYMBOLIC MONTH
ADD 5 TO REG 5 and PUT IT IN REG
EXIT IF R6 GETS TO ZERO.
UNSUCCESSFUL CONVERT

TEMPORARY FIXER B AR K HK
GO TO EXIT ROUTINE
SUCCESSFUL CONVERT
MOVE SYMBOLIC MONTH T0 WORK AREA

MVC MONTH (3) ,=C'XXX'

| B DAT EOEXT

POUND IC 15,=C*S?*
MVC MONTH(3) ,2{5)

DATEOEXT MVC DAY (2) ,PARMTPOS+4
MVC YEAR{2) ,PARM1POS REFORMAT YEAR
MyC TIME(4) ,PARM1POS+b SAVE TIME
MYC PARMLNH+#12(12) (WORK1 MOVE REFORMATTED DATE TO LIST
PFSRETRN RC=(15)

*CONSTANT SECTION

*
DS OF

WORK1 DS 0CL12 WORK

DAY DC cL2* ! AREA |

MONTH DC cLir - ! REFORMAT

YEAR DC cL2' ‘ DATE
DC CL1" /! AND :

TIME DC cLU4? TIME

x

DIGMNTH DC cL2*

*

SAVE DS 18F

TABLE DC C'O1JAN"
DC C'02FEB"
DC CY'O03MAR'
DC C'O4APR®
DC CTOSMAY!
DC C*'06JUNY
DC C'07JUL*
DC C'08AUG"
DC C'09SEP"

7Wo DIGIT MONTH WORK AREA

AREA TO STORE REGISTERS

BRSNS it raes 7

DC C*100CT?

DC C* 11NOV?
DC CY12DEC?
- ,
*¥DUMMY SECTION
x -
PARMLIST DSECT _
"PARMLNH DC HY 10" ARGUHENT LENGTH
PARM1POS DS cLi10? . ' ARGUDMENT
DS CcL12 FUNCTION NAX SIZE
DC cL1? ? : RETURN CODE
*
END
V4.
//LKED.SYSLMOD DSN=TESTERL (DTGOS) , DISP=0OLD
Ve
3.3.2 COBOL User Subroutines

The subroutine is called as follows:

CALL *SUBNAME' using DUMMY P2 P3.

The first linkage parameter is provided for use by assembly

language routines only but must be accounted for by
COBOL subroutines,

LINKAGE SECTION.

g1 DUMNY.
P22 NOTHING PICTURE X.

71 P2. _
72 ARGLEN PICTURE S (99) usage computational.

@2 ARGFNC PICTURE etc.

g1 pP3.
g2 RETURN-CODE PICTURE X.

CODE must be filled with *S? or 'M' to 1indicate
successful or unsuccessful conversion respectively. ARGLEN
contains the number of bytes in the ARGFNC area containing
the argument data. Function data should be inserted in
ABGFNC immediately following the last argument byte
(ARGFNC#N vhere N=number of bytes in the argument).

33

INTRODUCTION TO FILE CONCEPTS

The following statements should be inserted in the
PROCEDURE DIVISION -- :

ENTER LINKAGE.

ENTRY 'SUBNAME?! USING DUMMY P2 P3..

ENTER COBOL.

The following is an example of a COBOL subroutine which
serves the same function as the ALC conversion subroutine in

the previous paragraph.

//COBSUBS1 EXEC COBFCL,PARM.COB='MAP,BUP=12282,N0SEQ,LINECNT=50"

//COB.SYSIN DD *
000010 IDENTIFICATION DIVISION.
000020 PROGRAM~ID. 'COBSUB'.

000030 ENVIRONMENT DIVISION,

000040 CONFIGURATION SECTION.

000050 SOURCE-COMPUTER. IBM-360 HSO.
000060 OBJECT-COMPUTER. IBM-360 H50.
000070 DATA DIVISION.

000080 LINKAGE SECTION.

0000390 01 DUMMY.
. 000100 02 NOTHING PICTURE XXXX.
000110 01 P2.

000120 02 ARGLEN PICTURE XX..
000130 02 1IN-YEAR PICTURE XX.
000140 02 IN-MONTH PICTURE XX.
000150 02 IN-DAY PICTURE XX.
000160 02 IN~-TIME PICTURE XXXX.
000170 02 OUT-DAY PICTURE XX.
000180 02 OUT-MONTH PICTURE XXX.
000181 . 02 OUT-YEAR PICTURE XX.
000190 D2 SLASH PICTURE X.
000200 02 OUT-TIME PICTURE XXXX.
001010 £1 P3. »

001020 02 RODE PICTURE X.

001030 PROCEDURE DIVISION.

001040 ENTER LINKAGE.

001050 ENTRY 'COBSUB'USING DUMMY P2 P3.
001060 ENTER COBOL.

001070 INITIALIZE.

001080 MOVE 'S*' TO RODE.
001090 MOYE *'/!' TO SLASH.

001100 MOVE ZEROES TO OUT-DAY.

001110 MOVE *XXX' TO OUT-MONTH.

001120 MOVE ZEROES TO OUT-YEAR.

001130 MOVE ZEROES TO OUT-TIHE.

001140 CHECK-YEAR. : :

001150 - IF IN-YEAR IS GREATER THAN '997,

0011560 OR IN-YEAR IS LESS THAN '00°¢,

001170 MOVE *M' TO RODE, GO TO CHECK-MONTH.

001180 MOVE IN-YEAR TO OUT-YEAR.

001190 CHECK-MONTH

001200 IP IN-MONTH IS EQUAL TO *01*, MOVE *JAN!? OUT-MONTH,
002010 GO TO CHECK-DAY31. _

002020 IF IN-MONTH IS EQUAL TO '02', MOVE *FEB!' OUT-MONTH,
002030 GO TO CHECK-DAY28.

002040 IF IN-MONTH IS EQUAL TO '03', MOVE 'MAR® OUT-MONTH,
002050 . GO TO CHECK-DAY31.

002060 .- IF IN-MONTH IS EQUAL TO *04', MOVE ?!APR!? OUT-MONTH,
002070 GO TO CHECK-DAY30.

002080 IF IN-MONTH IS EQUAL TO *05*, MOVE 'MAY! OUT-MONTH,
002090 GO TO CHECK-DAY31. 4
002100 =~ IP IN-MONTH IS EQUAL TO '06', MOVE *JUN!' OUT-MONTH,
002110 GO TO CHECK-DAY30.

002120 IF IN-MONTH IS EQUAL TO '07%, MOVE 'JUL' OUT~-MONTH,
002130 GO TO CHECK-DAY31. , :
002140 IF IN-MONTH IS EQUAL TO '08', MOVE 'AUG' OUT-MONTH,
002150 GO TO CHECEK-DAY31.

002160 IF IN-MONTH IS EQUAL-TO *'09?', MOVE 'SEP! "QUT-MONTH,
002170 GO TO CHECK-DAY30. : :

002180 IFP IN-MONTH IS EQUAL TO *10', MOVE *OCT' QUT-MONTH,
002190 GO TO CHECK-DAY31.

002200 IF IN-MONTH IS EQUAL TO '11', MOVE 'NOV' OUT-MONTH,
003010 GO TO CHECK-DAY30.

003020 - IF IN-MONTH IS EQUAL TO *12', MOVE *DEC? OUT-MONTH,
003030 GO TO CHECK-DAY31.

003040 MOVE *M*' TO RODE.

003050 CHECK-DAY31.

003060 IF IN-DAY IS GREATER THAN *00°',

003070 AND IN-DAY IS LESS THAN ¢32', MOVE IN-DAY TO OUT-~DAY,
003080 GO TO CHECK-TIME.

003090 MOVE *'M* TO RODE, GO TO CHECK-TIME.

003100 CHECK-DAY30.

INTRODUCTION TO PILE CONCEPTS

003110 IF IN-DAY IS GREATER THAR '00°*,

003120 AND IN-DAY IS LESS THAN *'31°, MOVE IN-DAY TO OUT-
003130 GO TO CHECK-TIME. A '

003140 MOVE *M' to RODE, GO IO CHECK-TIME.

003150 CHECK-DAY28.

003160 IF IN-DAY IS GREATER THAN *00°',

003170 AND IN=DAY IS LESS THAN 1291, MOVE IN-DAY TO O0OT-
003180 GO TO CHECK-TIME. :

003190 MOVE *'M' TO RODE.

003200 CHECK~TIME.

004010 IF IN-TIME IS GREATER THAN 100,

004020 AND IN-TIME IS LESS THAN 12401,

004030 MOVE IN-TIME TO OUT-TIME, GO TO DEPART.

004040 MOVE 'M' TO RODE.

004050 DEPART.

004060 IF RODE IS NOT EQUAL TO *N‘, MOVE *S* TO RODE.
004070 ENTER LINKAGE.

004080 RETURN.

004090 ENTER COBOL.

/* |

//LKED.SYSLMOD DD DSN=TESTERL(COBSUB),DISP=OLD,UNIT=231Q

//LKED.SYSIN DD ¥

ENTRY COBSUB

/*

Note: The linkage editor control card, ENTRY CcOoBSUB, 1is
necessary for a COBOL subroutine (this name must
correspond with the nane of the subroutine as
defined on the ENTRY statement in the PROCEDURE
DIVISION) <

3.4 pefinition of Edit Masks

The user writes an edit mask in a language statement as
a literal. That is, single quote signs are used for
delineation. The edit capability of NIPS 360 PFS permits

the user the following features when applied to a numeric
data value:

ae Zero suppression

b. sign control left or right

K

ik
!

i,
i) |
IV|¢ e
i
i
i
it
fl
i
‘ !'E
|
]
I
!

t
liné;;;;

|

36

C. Leading and trailing significant characters

d. Character insertion.

The remainder of this section discusses the techniques of
writing an edit mask. '

Any character which can be printed may be used in the
edit mask except a quote mark. However, certain characters,
namely ampersands, blanks, and zeros, will not appear as
such 1in the output. Furthermore, minus or credit {(CR).
symbols have special meanings. One. character position in
the output is represented by one character in the edit mask.
Non-special characters in the mask will be printed in the.
same relative position in the output field. A mask may be
132 characters 1long; however, certain NIPS components have
shorter limits. As in most cases, since no more than 10
replaceable characters (blanks or zeros) can be filled by
source data, edit masks should tend to be 1less than 70

characters long.

The actions taken for each special character in the edlt
mask are given below. :

Blank —-- Each blank in the edit mask will be replaced by
a digit from the source field. .

Zero -- each zero in the edit mask will be replaced by
a digit from the source field, and the leftmost zero will be
the right most limit of zero suppression.

Ampersand -- Each ampersand in the edit mask will be
replaced by a blank in the output field.

Minus sign -~ If the minus sign is to the left of thp
first replaceable character or to the right of the last, it
is considered a 51gn control character. If the sign f1eld
is negative, the minus sign and any other nonreplaceable
characters occurring with it are printed. If the sign is
positive, neither the minus sign nor the accompanying
characters are printed.

INTRODUCTION TO FILE CONCEPTS

CR -- If the character C is immediately followed by the
character R on the left of the first replaceable character
or on the right of the last replaceable character, they are
considered as sign control characters, and are treated just
like a minus sign. :

The following examples should clarify the use of these
special characters..

Edit Mask Source Besult
*bb@bb * 12345 12345
o 00001 bbbl
*XXCREFbDX X' 123 bbbbb123XX
-123 XXCRb123XX
001 bbbbbb01XX
-001 XXCBbbO1XX
$.bb-" 12 : $.12b
-12 $.12-
01 $.01b
-01 $.01-
gh/bb/bb 010168 bl/01/68

If the size of the source field is known wvhen the edit mask
is first processed, a test is made to see whether that many
replaceable characters exist. If the source is too long,
the edit mask is rejected. If the source is too short, the
system will start at the left and replace the blanks and
zeros with ampersands until the desired number of
replaceable characters remain. This occurs before the test
for CR and -, but after the test for zero. Thus, a mask of
0-bhb for which a three-character source field is specified
" will cause a 001 field to be printed as bbOOl. '

If the size of the source field is not known when the
edit mask is first processed, the systen will count the
number of replaceable characters and return this number to

the calling progranm.

38

SECTION 4

SAHPLE NIPS 360 FPS DATA FILE

This section introduces a sample data file which 1is
typical for the files handled by the systenm. It is
presented here since the User's Manuals for all components
will use examples pertaining to this file. '

4.1 General File Organization

The name of the sanple file is TEST360. Its structure
is ‘defined to contain information concerning the status,
ordanization, location, and equipment of combat units of the
armed forces., Each data record in the file defines a single
unit in the armed forces., Hence, the key to each record
vill be the unit's identification code. Data in each record
has been formatted into a fixed set, six periodic sets, and
a variable set. Data coanversion subroutines and tables have
been defined to process some of the record's data.

The logical breakdown of data in a record 1is discussed
below. ' '

FIXED SET - The fixed set contains data defining the

' attributes of the unit which need only
one data value for satisfaction. Examples
of this are the unit's location, status,
activity, and commander's name.

Periodic Sets - The six periodic sets are used to contain
information defining the unit whose
record elements may have more than one
data value. For a periodic set, each
collection of data having the same format
is called a subset of the periodic set.

INTRODUCTION TO FILE CONCEPTS

PERIODIC SET Fach subset contains data describing a ,
piece of major equipment or a weapon
type possessed by the unit.

PERIODIC - Each subset contains data describing
a piece of secondary equipment or non-
essential material not requlred for
the unit's operation.

PERIODIC ! Each subset contains data describing
an operatioan plan which the unit must

follow. .

PERIODIC SET Each subset contains the name of a treaty
' to which the unit is responsible. :

PERIODIC'SET Bach subset contains information on a
senior or staff officer of the unit.

PERIODIC SET Each subset lists a subordinate unit
reporting to the unit.

VARIABLE SET The variable set in each record contains

commentary information about the unit.

4,2 Record Element Descrlptlon

This section describes each element in the file's record
format. The source language statements used to define the
format of this file appear in the File Structuring volume of
the NIPS 360 FFS User's Manual. '

http:commenta.ry

Element Element Set Input
Name Type__ No. _ Length Mode_ Conyv.

— e ——

SERV Record Fixed 1l ALPHA RCMDS Service Branch

control . Code
Field

Unit Identifier

Record
{Service) :

Control
Field

Unit Identification
Code {(Fields -
SERV,'UUIN).

‘Record
Control
Group
Field Military Unit
Type Code ‘

Field : ' Major Unit
: Indicator

Field ~Unit Organization
Level
(Fields-UNTYY,
UNTYZ, UNLVL)

ALPHA RCHDS OCHDS Current Home.
Command

ALPHA Unit Flag -
: Reserved for
Special Use

ALPHA Major Force
Indicator -

ALPHA RCHDS OCMDS Previous Home
Command

INTRODUCTION TO FILE CONCEPTS

Element Element Set

Name

ATACH

FUTU

TRDTG

ONRDY

REASN
RATTN

RECDE
RADTG

UNIT
-UNAME

OPCON

COMDR

LoC

POINT

~Lype__
Field

Field

Field

FPield

Field
Field

Group

Field

Field
Field

Field

Field

Field

Field

NO.

P X]

Fixed

Fixed

Fixed

Fixed

Fixed
Pixed

Fixed

Fixed

Fixed
Fi xed

Fixed

Fizxed

Fixed

Fixed

Length Mode_ ConY.

1

10

10

12
27

20

18

11

Input Output

conv.

ALPHA BCMDS OCHMDS

ALPHA BRCMDS OCHMDS

ALPHA DTGIS DTGOS
ALPHA
ALPHA
ALPHA
ALPHA

ALPHA DTGIS DTGOS

ALPHA
ALPHA

ALPHA

ALPHA

ALPHA

COORD

42

C.0.

Remarks

Attached Command
Reporting Units St

Future Homne Comman

Transfer Date to
New Command

Readiness Status

Readiness Down-
grade Reason

Readiness Expected
to Attain

Unit BReadiness
Status {(Fields-
UNRDY,REASN,RATTN)

Attainable Readi-
ness Status Date
and Time

Short Unit Nane
Full Unit Name

UIC of Higher

Unit Having
Operational Contro
Name and Rank

Location or Hull
Number of Unit

Geographic Locatio
{Lat-Long) of Unit
Headquarters

.atus

1

Element Element Set

Nape Type _ No.
" DAPT1 Field Fixed
DAPT2 Field Fixed
DAPT3 Field Fixed
DAPTYU Field Fixed
AREA Group Fixed
CNTRY Field Fixed
CNAM Field Fixed
GEPOL Field Fixed
"PERS Field Fixed
ACTIV Pield "Fixed
. LAUD Field Fixed

Input

Length Mode Conv.
11 CODRD
11 COORD
11 COORD
11 COORD
44 COORD
2 ALPHA
15 ALPHA
2 ALPHA
6 NUMER
2 ALPHA
10 ALPHA

43

Output
CORV.

CTRYS

CTRYS

ACTVS

Remacks _ _______
Geographic Points
(Lat~-Long) Defined
in Counterclock-

- wise Order Which

Defines the Unit's
Area of Deployment
or responsibility

Coordinate Area
{Pields-DAPT1,
DAPT2, DAPT3,
DAPTA4)

Country Code
Where Unit is
Located

Country Name Where
Unit is Located

Geopolitical
Code Where Unit is
Located

Authorized
Personnel Strength

Current Activity
Code '

Date-Time of Last
Record Update

INTRODUCTION TO

Blement Element

BRPERS
REQPT
RTRNG

RMGRP

READAVG

RITNM

UNTYP
TPNAM

UNTOE

HIER

Field

Field

Field

Group

Field

Field

Field
Field

Field

Field

FILE CONCEPTS

Fixed

Fixed

Fixed

Fixed

Fixed’

Fixed

Pixed

Fixed

Fixed

Fixed

42

17

11

NUMER
NUMER
NUMER

NUMER

NUMER

NUMER

ALPHA
ALPHA

ALPHA

ALPHA

44

e e Sy e s il st D A T, St g, D

tocation Status
Whether Known,
Unknown, orC
Embarked

Personnel Readi-
ness Code

Equipment Readi-
ness Code

Training Readi-
ness Code

Readiness Group
(Pields~-RPERS,
RSPLY, REQPT,
RTRNG)

Readiness Average
to Hundredths

Radius of Maximunm
Distance fron

command Ship -~ to
Tenths Naut. Mile

‘Unit Type Code

Unit Type Name

T/0 and E
Reference

Unit Hierarchy
Code

Element Element Set Input Output

Name___ _Type__ No._ _ Length Mode Conv. Conv. Remarks __
COMMENT Field Fixed Variable Vvariable Length
* Field to Hold
Comments
MECL Field 1 3 ALPHA Major Equipment
Class
MEQPT Field 1 10 ALPHA ' fajor Equipment ID
MECLQ Subset 1 13 ALPHA : Major Equipment

Class and Type

Control
Group {FPields - MECL,
MEQPT)
MEMOD Field 1 10 ALPHA ' _ Major Bquipment
Model Number
MENAM Field 1 18 ALPHA ' Major Equipment
‘ Name :
MECAP Field 1 1 ALPHA . Heapon Delivery
' Capability Code.
MEPSD Field 1 3 NUMER Number of Equip-
- ments Possessed
MEADA Field 1 -3 NUMER Number of Equip-
: ments on Alert
MEORC Field 1 3 NUMER Number of Equip-
: ments Ready for
Conventional
Weapon Delivery
MEORN Field 1 3 NOUMER : Number of Egquip-

ments Ready for
Nuclear Weapon
Delivery

45

INTRODUCTION TO FILE CONCEPTS

Element Element Set Input Output

Nane _Iype__ No. Length Mode_ Conv. 'Con¥. Remarks ________

MESQP ~ Field 1 3 NUMER " Number of Equip-
ments on Special
Alert

MESWP Field 1 3 NUMER Number of Equip-
ments on Special
Alert with
Nuclear Capability

MESIA Group 1 6 NUMER Special Alert

' Group {Fields -

MESQP, MESWP)

MESIC Field 1 3 NUMER Number of Equip-

ments Conmmitted
for Special Alerts

MEREC Field 1 10 ALPHA Equipment
‘Reconnaissance
Capability

MEDEP Field 1 1l ALPHA Code indicating

if Equipment is
at Home Location
or TDY '

MEDDT Field 1 5 NUMER Date Eguipment
went on TDY Status

(Julian Date)

MEDUR Field 1 1 ALPHA TDY Duration Code
MELYN Field 1 1 ALPHA TDY Deployment
' . Status

46

http:L~!!.g.tb

SR AP, S e G e

glement Element Set

Name___ _Type _ No.
MELOC Field 1
HEPNT Field 1
METRY Field 1
MEPOL Pield 1
MECNA Field 1
SECLASS Field 2
SEMODEL Field 2
SENAME Field 2
SEPOSSD Field 2
SEAUTH Field 2
PLAN Field 3

Length Mode_ Conv.

18

11

15

10

18

ALPHA

COORD

ALPHA

ALPHA

ALPHA

ALPHA

ALPHA

ALPHA

NUMER

NUMER

NUMER

47

CTRYS

CTRYS

Remarks

TDY Equipment
Location

Geographic Location
{Lat-Long) of TDY.
Equipnent

Country Code where
TDY Equipment is
Located

Geopolitical Area
Code where TDY
Equipment 1is
Located

Country Name for
TDY Location

Secondary Equipment
Classification

Secondary Equipmen£

Hodel Number

Secondary Equipment
Popular Name

Number of Equip~
ments Possessed

Number of Equip-
ments Authorized

Plan Identification
Number

INTRODUCTION TO FILE CONCEPTS

Element Element Set
Name __ _Type _ NO= . conv. emarks __ —_

PLEAC Field 3 L Plan Status Code
for Unit

PLDTG Field ALPHA DRGIS Date-Time Unit
‘ Adhered to Plan

PLFST Field ALPHA Expected Plan
' ’ Status Code

PLFDG Field ALPHA DTGIS Expect Date-Tine
: : Unit will be
Committed to Plan.

PLRT Plan Response Time

PLTRT ' Transportation
Staging Time

TRTY ’ Treaty Code of Unit
‘ Affiliation

NAME Senior Officer/PO
Name

RANK ‘ Senior Officer/PO
Rank

SERNUMR , Serial Number

SERVICE Service Branch Code
ASSGN . Unit Assiganment
SPCODE Specialty Code

SBUIC o subordinate Unit UIC

http:II.E!l--l!Q:.--l&!!9.th

Input Output

Element Element Set
conyv.

Name___ .

SBFLG 6 ALPHA Reason for
Subordinate UIC
Unit Remarks/ .
Comments in
Unformatted Forn

REFER variable
Set

4.3 ‘Subroutine/Table Description

This subsection describes the conversion subroutines and
tables used by the sample file.

h.3.1 Table - RCMDS

The table RCMDS is used for input data conversion. It
will accept up to a six-character argument and produce a
single character code as a function. The table is used for.
converting names of unified/specified commands to single-
character codes. A sample of the table contents follows:

FUNCTION

USAG .
USMC
JCsS

NORAD
SAC

4.3.2 Table - OCHMDS

The table OCMDS is used f£or output conversion. It
accepts a single-character code. representing a unified/

specified command and expands it to a name oOf up to six
characters. The table is used with the input conversion

table, RCMDS. A sample of the table contents follows:

ol
@M

i

INTRODUCTION TO FILE CONCEPTS

ARGUMENT FUNCTION
M MARINE
N NAVY
R RCAF
g ANEAC
2 LANT
4 EUCOM
7 STRIKE

403.3 Table - CTRYS

The table CTRYS_is used for output conversion. It
accepts as an argument a tvo-character code and expands to
a country or geopolitical area name which may be up to 15
characters in length. A sample of the table contents

follow:

ARGUUENT FUNCTION
AC ATLANTIC OCEAN
AL ALBANIA
AT , AUSTRALIA
BD BERMUDA ISLANDS
CB ' CAMBCDIA
EG , EGYPT
GU GUAM
TH THAILAND
19 LOUISIANA
37 OKLAHOMA
47 . VIRGINIA
65 PACIFIC ISLANDS

4.3.4 . Table - ACTVS

The table ACTVS is used for output conversion. It
accepts a two-character code and expands it to state a

50

certain military activity of up to 15 characters. A sanple
of the table contents follows:

ARGUMEN

A S Sl e A

ACTIVATING
'CIVIL DISTURB
COMBAT |
DEACTIVATING
EXER/MANEUVER
MAINTENANCE

SHOW OF FORCE
SR : f SEARCH/RESCUE
TR TRAINING

4.3.5 Table - UNLVS

» The table UNLVS is used for output conversion. It
accepts up to a three-character code and expands it to state
a unit's level using up to 15 characters. A sample of the

table contents follows:

RGUHENT UNCTION
ACD ACADEMY
ANX ANNEX
co COMPANY
DAY DIV ARTILLERY
FLT | NUMBERED FLEET
HQ | , HEADQUARTERS
HSP HOSPITAL
MER MERCHANT SHIP
PLT PLATOON
RCT RGT COMBAT TEAU

- -

INTRODUCTION TO FILE CONCEPTS

SYD SHIP YARD
TF TASK FORCE
Uss US SHIP

4.3.6 Subroutine - DTGIS

The subroutine DTGIS is used for input data . conversion.
It accepts a l2-character data iten which is a Date-Time
group and converts it to a l0-character form suitable for
sorting dates in segueunce.

The input format to the subroutine iss

DDTTTTZMMMYY

where
DD
TTTT
2
MMM
YY

Day of Month

2400 Hour Time

Flag Indicating Greenvich Time
Month (Jan, Feb, —-— DecC)

Year {65, 66 —-—).

Wi

The output format from the subroutine is:

YYMMDDTTIT

Year (65, 66 —--)

month Code (Jan=01, Feb=02)
Day of Month

Greenwich Time.

4.3.7 Subroutine - DTGOS

The subroutine DTGOS is used for output conversion. It
accepts as input the 10~-character Date-Time group produced
by DTGIS and converts it to the l2-character source format.

53

INTRODUCTION TO FILE CONCEPTS

INTRODUCTION TO FILE CONCEPTS

Section 5

GLOSSARY

This section contains a list of terms commonly used with
the NIPS 360 FFS. A brief description is supplied.. Most of
the terms the user may come across which are related to
S/360 hardware and standard software are not repeated here
since they are adequately discussed in the 1IBH SRL

publications.

Block . a. A physical record {separated from other
records by inter-record gaps) which
contains multiple, logical data records.
Refer to blocking of records.

b. A group of computer wvords considered
as a unit by virtue of their being
stored in successive storage locations.

Block Count A field vhich is the first four characters

(Field) of each block of file records, containing
the number of characters in the block. Do
not confuse vwith record character count.

Blocking of The combining of multiple logical records

Records into one block of information on tape to
decrease the time wasted due to accelera-

! tion and deceleration of tape and to

A conserve space on tape.

Circle Search A special geographic retrieval operator
which permits selection of file records

54

Component
Control Pield
Control Group

Data Base

Data File

Data Set

Data Record

FFS
FFT

Field

Field Nane

by determining if a point carried in the
file record falls within a circle speci-
fied as the search criteria.

A major functional unit within NIPS 360 FFS.

Refer to record control field.

Refer to record control group or record ID.

The collection of data files (data sets)
used under the systen.

Also called FFS data file or formatted

file or file. A collection of data records,
called file records, which can be logically
grouped on the basis of subject matter.
Since the organization of the data is
formatted, the file is called a formatted

file.

NIPS 360 term essentially implying a data
file., Used to describe a collection

of data records, stored in common, and
accessed as an entity.

As a general term, means a group of related
fields of data treated as a unpit., Often
used to mean FFS file record (refer to
file record).

Formatted File Systen.
File Format Table.
The smallest defined logical unit of data

in a record handled by the FFS)
consisting of one or more adjacent characters.

The synonym or mnemonic assigned to

represent a discrete area (field or group)
in the data record.

55

INTRODUCTION TO FILE CONCEPTS

Generally a nonspecific term meaning an
organized collection of information directed
toward some purpose. However, in this
documentation, file means FFS data file,
unless othervise qualified. (Refer to

data file.)

File Format A collection of records which completely
Table describes the format of the FFS data file.
They arce generated by the File structurcing
component. There is one FFT for each data
file.

File ID " Name of the FFS data file.
File Mnemonic same as file ID.

File Record {Also called data record.) A group of

related fields of data. The file record

is formatted - that is, each element of
the file record has been defined, identified
and assigned a relative position. Each
file record has a fixed set which contains the
record ID. The file record may also contain
a number of periodic sets and/or variable
sets. :

FIT ' File Information Table.
Fixed Field A field defined in the fixed set of a filé

record and which must appear once and only
once in the file record. '

Fixed Group Refer to groupe.

Fixed Set That portion of a file record consisting
of all the fixed fields/groups of the file
record.

FN System component =< File #aintenance.

Format ‘ A predetermined arrangement of characters,
fields, or other data. A format does not

Formatted File
FR
FS

Group

High-Order
Position

HOP

Input
Descriptor

Input File

Input Group

 Input Group
- Control Field

describe the data, but describes its
organization.

Refer to data file.
Systemr componant -- File Revision.
System component -~ File Structuring.

A collection of one or more adjacent fields
of the same type which are related. A
group is capable of being processed or
otherwise manipulated as a unit. The
system may treat a group the same as a
field. The fields within a group in no

way lose their individual identities and
may be treated as if they were not grouped.
If fixed fields are grouped, the group is

a fixed group. A periodic group is a
grouping of periodic fields.

The leftmost (most significant)
position of a field.

High-Order Position.

A deck of cards which describes the
external format of input data for the
FM component,

A card or tape file which contains all

or a portion of the data needed by FM

to update a NIPS data file (also known as
a transaction file).

A1l of those input records containing
information to be extracted for the
purposes of creating or updating a single
{the same) file record.

An artificial control field or an actual

data field (or fields) by which the input
file is sorted or manually arranged prior

57

INTRODUCTION TO FILE CONCEPTS

Input Record
Input Record
Type Code

Inpﬁt Table
subroutine

. Library

Logic Statement

Logical Record

Lop

Low-Order
Position

Mnemonic

Mode

to input to the systen. This is done soO
that all input records belonging to the

same input group {i.e., pertaining to the
same file record) will be grouped together.

A single card {or tape record) in an input
file.

The code used to distinguish one input
record type from another.

A user-supplied data conversion/validation
table or subroutine utilized to convert
data from its external form to an_ internal
form required by the user.

An 05/360 partitioned data set used to store
programs. In NIPS, libraries are also used

for user subroutines, tables, RITs, and re-

trievals.

An executable 1load module generated by FM fronm
user logic specifications to perform the file
update function for one transaction type.

A collection of data elements which is
distinct and complete_as‘interpreted by
the system. One physical record {block)
may contain many logical records.

Low-Order Position.

The rightmost (least significant)
position of a field.

Generally refers to a symbol or name which
stands for an equivalent machine-oriented
value.

Refers to the method by vhich data is
stored in a data record {i.e., alphameric,
numeric, or carordinate).

Module A term used to refer to any mix of
components, sections, phases, routines, or
subroutines.

Multilreel Pile A file so large as to require more than one
physical reel of tape for storage.

Multivolume File Same as multireel file except it may pertain
to either tape reels or disk packs.

NIPS NMCS Information Processing Systen.

oP System component -- OCutput ProceéSoc‘

0s5/360 System/360 Operating Systen.

Qutput Table/ A user-supplied data conversion table/

Subroutine subroutine which is used to convert data
from an internal system form to an
external form required by the user.

Periodic Field A field defined in a perjodic set of a

file record, and which may appear more than
once in a file record.

Periodic Group Refer to group. One or more contiguous
: fields of the sanme periodic subset,
handled as one logical entity.

Periodic Set A collection of periodic subsets having
the same format.

Phase : A collection of routines and/or subroutines
which are treated together as a module
loaded in core together (also may be
referred to as an overlay).

Polygon Overlap A special geographic retrieval operator
- which permits selection of file records on
such criteria as a point falling within an
area, two areas overlapping, a line
intersecting another line, etc. See RASP
User's Manual.

INTRODUCTION TO FILE CONCEPTS

PSSQ

QDF

QuIrp

QRT

RASP

record Character
Count (Field)
Record Control

Record ID (also
called Record

control Group or

Record Key)

RIT

Routine

Section

Section/Phase

. instructions,

periodic subset seguence number.

Qualifying Data File - An output of RASP;
this data set, together with the QRT
performs the function of providing an
manver" file. See RASP User's Manual.

System component -= Quick Inquiry Processor.

Qualifying Record Table ~ See QDF.

System component -- Retrieval and Sort
A field which is the first two characters
of every logical record. It contains the
count of characters in the logical record.

Refer to Record ID.

rhe initial data field({(s) of the fixed set

which make each file record in a file
unique, and are used to identify the file
record. The file records in a file are
sequenced according to the contents of
their record control group or record ID.

Report Instruction Table generated by
OP to direct output format.

A logical collection of subroutines and

and is a logical portion of
a phase.

A named phase(s) of a component.

section,
is termed

when there are no phases within a
the section, a single operation,

- a section/phase.

A collection of fields and groups of the
same type.

Processor.

S0DA

Subroutine
Subset
Table

TP

Transaction

Variable Eield

System component -- Source Data Automation.

A collection of machine instructions per-
forming a simple, single logical function,
and is a logical portion of a routine.

A periodic subset. A segment of recurring
information, composed of periodic fields.

A collection of argument-function pairs
organized for efficient searching.

System component -- Terminal Processing.

An input record to the FM or S0DA components
which contains data file update information.

Each set in a record format may have one
variable field defined. ®hen defined it
carries no size specification and may be
used to store unformatted data of variable

lengths.

Variable set control field.

Variable set.

INTRODUCTICN TO FILE CONCEPTS

Appendix A

PHYSICAL DESCRIPTION OF THE NIPSA360 FFS DATA
FILE AND FILE FORMAT TABLE

The material contained im this appendix is quite
technical and should not generally be needed by the average
user of the NIPS 360 FFS. However, it is presented here for
those users who are interested in the actual manner in which
data is referenced and stored in a file. In addition it
will aid users who, having dumped the file in image forn,
desire to locate specific items of information.

The NIPS 360 FFS data file and 1its associated File
Format Table are stored as a DATA SET. The term DATA SET is
the 0S/360 terminology used to refer to a logical collection
of data which is accessible to the system through a unique

nanme,
A.l Data Set Organization

The NIPS 360 FFS data set is built and maintained using
the 0S/360 1Indexed Sequential Access Method or - the
Sequential Access Method. 1logical records in the data set
are variable length and may be up to 1,000 bytes in 1length.
These 1logical records are blocked 1into physical records
which have a maximum size of 1,004 bytes. When the data set
is indexed, each logical record has a key field used to
uniquely identify the record. The generalized format of a
logical record in the data set is as shown:

Al B C D

A - Four bytes used for OS control; contains length
of record. :

62

B - One byte used as a flag to contain a delete code
when the record is to be removed from the data

indexed set.

C - This field is the record key containing data to
uniquely identify the logical record in the data
set. ’ '

D - This portion of the logical record contains the

actual data.

The data set contains several categories of information
in its logical records. The primary purpose of the data set
is to <contain the user's data file which requires the bulk
of the space used. Also contained in the data set is
supporting information <consisting of the FFT and the FM
logic statements used during file maintenance. Discussion
in this appendix is 1limited to describing thes format and

organization of the FFT and data file,

The first Character in the record key of each logical
record in the data set is used as a code indicating the type
of information carried. Being first in the key, it is also

used to cause the data set to be sequenced in ascending
order based on record types. The general order of record

types is as follows:
va. File Format Table records
b. FH Logic Statement records
Ce The Statistics Record for ISAM data files
d. Segment Records for Segmented SAM data files
e. User's Data File Records |

The character codes used are as follows:

B - Classification Record | FFT

C - Data File Control Record FFT

63

INTRODUCTION TO FILE CONCEPTS

F - Element Format Records FFT
L&M .- FM Logic Statement Records
.N' - Statistics Record
P - Segment Records
R - User's Data File Records
A.2 Data File Records

The format and organization of records making wup the
data file are discussed in this section. '

Each user data record will consist of one or more
logical records in the 05/360 data set. There will be a
logical record for each fixed set and each subset in a
periodic set of the user data record. The major key field
for all logical records related as a single user data record
will be the same and will contain the record control group.
However, the minor key fields will differ based on set type
and subset number, Within the data base records, the
storage of information will be in two types of notation,
For alphameric fields, the information will be stored as
EBCDIC characters {i.e., one byte for each character). The
numeric fields will be stored as binary vords (i.e., four
bytes used in binary notation). During FS, the location of
binary fields within the 1logical data record will be
controlled so as to conforn to boundary alignment
requirements when the data record is brought into internal

memory.

When the FS component is executed, the format for the
logical records is created. All user-defined record
elements for the fixed set will define a format for a
logical record wused to contain the fixed set. All user-
defined record eleménts for a periodic set will define a
format to be used with each logical record which contains a
subset of data and so forth., In addition to user-defined
elenents of a logical record, some elements are

64

automatically generated by the FS component and given
special names. They are used for system control. Each.
distinct element 1in. a logical record (user and systenm
defined) has a corresponding logical record in the FFT which
contains information completely describing the attributes of
the elenment. The element name is used in the key of such

records.

The remainder of this appendix illustrates the typical
format for data file records when they reside in the data
set. All elements which would‘be generated are shown.

Elements which were directly defined by the user with
source statements using the FS component are flagged .with
the character "s" (see format which follows) to represent’
the generalized case. Some of the system generated elements
have names which start with the character "#", This is used
to represent .a byte containing all zero bits. When the
format for a user's defined set is translated into the
format for a logical record, all numeric fields {binary
words) are blocked together. This 1is to ease the
requirements for binary field boundary alignment when the
logical record is resident in core. That is, data can be
worked wusing machine instructions directly. To accomplish
this, whenever the logical record is read into core nmenmory,
the record is started on a full word boundary address.

Then, if it is necessary, slack bytes are generated by FS
between the key and the block of binary words in the logical
record to force the binary block to begin on a fullword

boundary in core.

When PS defines the format for a logical record, any
needed slack bytes are accounted for in the record

description.

NTRODUCTION TO FILE CONCEPTS

ST RIPAIED S I DD A S S S I SNt e TR S W

Fixed Set_Logical_ Record Format

{3) _(4)_{5) (6) (7) {8) 191!LQliLQLilQlﬁlQlwiLLL.-iill 4;11-_ﬁ;zx'

| T 7
R | s | s |s|s|s | s | s [s]s]s
4 ' | ’
- {15) ‘ {16) . (17)
[FRecord Key— r-BinarynField BloCka ’ '

Periodic_Set {Subset) Logical Record_Format

L2} 131 (0 (5)(6) (7) _{8)(9) (10} (101 (10) (L) (11} (L) (A1) _{12)

L1l lels sl sis s Is I s ls ls | s
- | 4))
(14) - : - {19) {16) : (17)

—Record Key-— | Binary Field : : :

' Block
Variable Set Logical Record Format

,L;}.rz) (3) _(8) (5)(6) (7) (8) {9) ___ {13 e
|l R | S _1s o _ ’ ‘
{ | 5 (15 (1 | | I
{14) ©{15) (16) (17) .-

F—Record Key—4 : ‘

66

(1) Record Size Field
Length - Four bytes
Contents - First two bytes are used as a binary
halfword to indicate logical record
length. The last two bytes are reserved
for 0S use.

{2) Deletion Code Field
Length - One byte
Contents - Field is set to all binary one?s by the
system if the record is to be deleted
from the data set ‘under the control of
the I/0 supervisor. Othervise contents
are impaterial. Not accessable by user,

The following items {3) through {6) are treated together
as the key.to the logical record and contents are unique in

the data set,

{3) Record Type Field
Length ~ One byte
Contents - The character "R™ to distinguish data
records within the data set. Systen
generated name for this field is +FIL.

{4) = Record Control Field

Length -~ Variable -

Contents - Contains the data record control group
vhich logically ties all logical
records. together in the data set
which are related to each other {i.e.,
the fixed set with all its associated
periodic subsets). This field size is
specified by the user for a particular
data set. If the contents for a
particular data record are shorter
than the field itself, the contents
are left-justified. The system generated
name for this field is +RCN.

(5) sSet ID Field
Length - One byte

INTBODUCTION TO FILE CONCEPTS

Contents - Uses binary notation to identify vhether
the logical record is fixed or
periodic in use. If periodic, it will
identify which set it belongs to. The
scheme used for identification is -

2pppRPPP - Fixed Set
999Pgg1L - 1lst Periodic Set

-

11111111 - 255th Periodic Set

The system generated nanme for
this field is +PCN.

(6) Subset Control Field
' Length — Minimum of four bytes
Contents - When a periodic set does not have a
secondary ID specified, these four
bytes are used as a number (unsigned
2soned EBCDIC) for assigning seguence
numbers to the subsets.

when a periodic set has a field(s)
specified as a subset control group,
the field{s) will appear 1in the access
key and the key field length will be.
adjusted to acconmodate it. When a
periodic set has a control field
defined which is greater than four
bytes, then the length of this key
field is enlarged to accept the
control data, and this new size will
appear for all periodic sets.
periodic sets which have no control
field will have their sequence
numbers left justified in the field.

~ PFixed sets will have binary zeros

~in this field. If necessary, any

o padding to the right of the decinmal
sequence number will .be with binary
Zeros.

68

The system generated names for
this field are PSSQ(n) and +SC{b)
vhen no subset control group is
defined for the periodic set. If
a subset control group is defined,
the only system generated name is
+SC(b) .

(Note (b) stands for a byte using
binary notation to express the set

number.) -

Length of Binary Data Block
Length ~ One byte
Contents - Number of full words making up the
pinary data block in the data record
{field 9 and 10) expressed in binary.
system generated name for this field
is +BS%Z.

Logical Record Padding ,
Length - Variable number of bytes.

Contents - Binary zeros for the number of bytes
necessary for field nine to begin on
a full word boundary in core menory.

size of Variable Field

Length - Four bytes ({(binary fullword).

Contents - Size of variable field if existing.
Otherwvise all binary zeros. The
system generated name for this field
is VvSZ{n). The system nane VSCTL may
also reference this field. It is
the first variable set created.

User-Defined Numeric Fields
Length - Fach is four bytes (binary fullword)

Contents - User-supplied numeric data. _

User-Defined Alphameric Fields and Groups
Length - variable length using EBCDIC characters.

Contents - User-supplied alphameric data.

INTRODUCTION TO FILE CONCEPTS

(12)

(13)

(14)

(15)

(16)

(17)

The

variable Fields (fixed or periodic set)
Length - vVariable length using EBCDIC characters.

Contents - User-supplied alphameric data.

variable Field (Defined variable Set)
Length - variable as specified on the VSET
source language statement in FS.
Contents - User-supplied alphameric data.

The first byte of the data record will be on fullword
boundary alignment.

The first byte of the binary word block of a data record
is adjusted by the padding of field {(8) so as to be on
fullword boundary alignment.

The low-order byte of the rightrost binary full word is
addressed by entry number (L6) in the control record
for a fixed set and by entry nunber (19) in the control

record for a periodic set.

The first byte of a variable field is referenced by the
appropriate user—-assigned nane as found in the element

format record.

following discussion defines in greater detail the

operation of the system generated fields PSSQ (n) and +SC(b).

The minor sort field of the key for a logical record is
defined as the Subset Control field. For data files defined
with periodic sets 1in which no subset control groups were
required (data dependent), this subset control field will be
four bytes in length. Two system generated field nanmes

{#SC {b)

and PSsQon) will reference this field. 1Its contents

will be decimal numbers used for subset sequencing.

For a
periodic
groups),

data file having mixed periodic sets (i.e.,
sets without control groups and some with control
the following conventions apply. A PssQ{n) field

pame will be generated only for those sets vwhich have no
control group and reference is made to the first four high-
order bytes of the subset control field. A +SC{b) field

70 -

name will be generated for all periodic sets and will
reference only the significant data contained in the subset

control field.

An example for discussion above, consider the case when
a dJdata file has three periodic sets defined. Two of these
periodic sets have subset control groups which differ in
length, In the following format, each character represeats

a byte,

71

INTRODUCTION TO FILE CONCEPTS

PIXED SET

PERIODIC

SET 1
(l0-characters
periodic
control group)

PERIODIC

SET 2
{5-character
periodic
control group)

Record Key

Subset Control-——

B]A A A A A A_A[g ccegcecececececcec
A Record ID Value
B Eight binary zeros indicating fixed
C All 10 bytes have binary zeros

g]A A_A A A A glﬁ_c cececcecceccececec e
A Record ID value
B Binary content of byte is @@PB24p1

indicating lst periodic set.

Contains periodic control value.
The system generates the field
name +SC{b) for this 10 byte field.
"h" has the binary value PG@gFPPF1.

oo et o et e e et it e e e e, '

_____ij

set

A_A Alﬁ c CCC QID D D_D.D

-

Record ID value

Binary content of byte is UgggEplp
indicating 2nd periodic set.

Contains periodic control value.
The system generates the field
name *SC{b) for this five byte
field. "b" has the value F@@gpFilgo.

Remaining five bytes are padded
with binary zeros.

72

PERIODIC

SET 3

{¥o periodic
control group)

Record ID value

Binary content of byte is ppgageLl
indicating 3rd periodic set.

Contains the subset sequence number.
The system generates the field nanme
+SC{b) and PSSQ3 for this four byte
field. 'b' has the value FPg@ggll.

Remaining six bytes are padded with
binary zeros. Note that the length
of the subset control field in the
acess key for the entire data file
is dependent upon the largest
periodic control group defined.
All other sets have their values left
justified. Also the names +RCN and
~+#SC(b) are generated by the systenm
even though the user-supplied names
for the same fields. .

The following conventions concerning group definitionms
;durlng FS are used:

- An alphameric group containing all alphameric fields
‘will have all fields in EBCDIC character notation

{mode code "A"Y").

An alphameric group contalnlng one or more numeric
fields will have these numeric fields generated in
zoned EBCDIC decimal notation (mode code "D").

A numeric group containing all numeric fields will.
have all fields generated in zoned EBCDIC decimal

INTRODUCTION TO FILE CONCEPTS

notation (mode code "D%),

- A numeric group containing both alphameric and
numeric fields will not be allowed.

- Numeric fields or groups may not be used as record
control or subset control groups. Only EBCDIC
characters may be used in the access key.

‘-_A coordinate group contains fields in the binary
block of the logical records. Each field is a

binary wvword capable of containing either a latitude

or longitude value.

A.3 File Format Table Records

This subsection 'discusses in sequence the types of
records found in the PFT portion of the data set.

1,3.1. Classification Record

There is one classification record in the 0S/360 data
set. It appears first, and its purpose is to carry the
,user-supplied classification 1label defined when File
Structuring was run. The format for the classification

record is:

%) (B) (C) (D) _ (E)_ | (F)
-' XXXXX. .. XX ‘]

{(2) Record size field - contains X'104° (for files
structured under 360 NIPS), or X'108' {for files
converted fror 1410 to 360 NIPS)

{B) Reserved for OS

{C) Delete code field - contains X'00?

(D) Record type field - contains C'B!?

(E) Classification - contains classification literal
left-justified in a 32-byte field. Any padding to
right will be wvwith blanks.

(F) Slack bytes to bring record to a size greater than

a maximum key.

74

1.3.2 Data File Control Record

There is one data file Control Record in the data set.
[t appears sequentially following the Classification Record.
[ts purpose is to supply information to the using FF3
component on the organization and format of the element
format - records. In a sense, it provides the bootstrap
information needed for a component to interpret correctly
the element format records. In addition it supplies basic
information on the organization of the resident data file..

‘ The format of the data file Control Record and
description of its contents follow:

Group Repeats for each periodic set

1 (2 (3 (9 (5) (6) (7) (8) (9) (10) (11) (12) (13) (18) (15) (16) (17)
_ (19) (

Record Size Field
Length - Four bytes
Contents - First two bytes are a blnary halfword
used to specify record length. The
last two are reserved for 0S use.

Deletion Code Field
Length - One byte
Contents - All binary 1's set by system if record
is to deleted from the data set.
Otherwise contents are immaterial.
Not accessable by user.

Record Type Field
Length - One byte EBCDIC
Contents - The character 'C?'.

control Record Key Padding
Length - 254 bytes
Contents - Binary zeros throughout all bytes.
Used to force the fixed information

i

INTRODUCTION TO FILE CONCEPTS

carcried in the control record beyond
the largest access key that may be
defined. Optional: May contain 'C*
in high-order byte. See Continuation
Record Techniques.

Note: The access key for the control record is made up of-
field (3) and all or part of field {4) depending on the
length required for the data file.

{5) High-Order Position of Record Control Group in the
Record Key of user data records (logical).
Length - Binary halfword
Contents - Location is relative to the high-order
byte of the record size field which
is based at zero. Varies in
continuation records.

Length of Record Control Group
Length . - Binary halfword
Contents - Size of record control gtoup. Null
characters in continuation records.

High-Oorder Position of Set ID Field in the Record of User
Data Records (Logical) Key
Length - Binary halfword
Contents - Location specification same as (5).
Null characters in continuation
records.

Length of Set ID Field
Length - Binary halfwvord
Contents - Size of field (1 byte).
Null characters in continuation
records.

High-Order Position of Subset Control Group in the
Record Key of User Data Record (Logical) .
Length - Binary halfword
Contents - Location spec1f1cat10n same as {95).
Null characters in continuation recordse

Length of Subset Control Group

Length -
Contents -

Binary halfwvord

If no periodic set control group for

the data file has been defined, the

size will be four bytes, otherwise

the size of the largest periodic set
control group specified will be used.
Null characters in continuation records.

(11) Number of Periodic Sets

Length -
Contents -

Binary halfword

The number of periodic sets defined

for the data file is stated. If there
are none, this entry contains all
binary zeros. If a continuation record
is used, the field in the continuation
record contains the number of sets
defined by this record.

{12) High-Order Position of Significant Data in the Elenment

Format Records
Length -
Contents -

{13) Dummy Entry
Length -
Contents -

{14) Length of Fixed
Length -
Contents -

One byte using binary notation
Provides the relative high-order
position of data contained in the
element format records. The first
byte of the element format record is
considered at a zero location. This
field is used because there may be
byte padding between the last character
of the access key and the first byte
of data contained in the element
format record. This will allow half
boundary alignment for the binary
entries in those records. '

Three bytes

High-order byte contains a 'C* if a
continuation record follows. Othervise
contains binary zeros.

Set Logical Record

.One byte using binary notation

Size in full words includes record

17

INTRODUCTION TO FILE CONCEPTS

size field, deletion code field,
access key, and all defined fixed
length fields. 1In addition, it may
include some padding {binary zeros)
at end of set so that the entire
logical record will conform to full
word boundary alignment. Null
characters in a continuation record.

{15) Number of Binary Words in the Fixed Set Logical Record
Length ~ One byte -
Contents - Number of fullwvords in the block of
binary words which are contained in the
fixed set. Binary notation is used
in this field. ©Null characters in
a continuation record.

{16) Low-Order Position of Binary Block in Fixed Set (low-order
byte) Logical Record
Length - Binary halfword
Contents - Location relative to the first byte
of the record size field which is
based at zero. Null characters in a
continuation record.

Note: The following fields in the control record are optional.

{17) Length of First Periodic Set Logical Record
Length - One byte using binary notation
Contents - Size in fullwords as was specified
for field (14) above.

(18) Number of Binary Words im First Periodic Set Logical

Record
Length - One byte
contents - Number of fullwords in the block of
binary words which are contained in
the first periodic set. Binary
notation is used in this field.

{19) Low-Order Position of Binary Block in the First
Periodic Set Logical Record
lLength - Binary halfvord

Contents - Position specified same way as for
field (L6) above

Note: The fields (17), {18), and {19) may be repeated as a
group to define as many periodic sets as are required. Up
to 255 periodic sets nmay be defined. While reading this
appendix, it may be best to study the data record format
for logical records contained in this appendix. For files
containing in excess of 179 sets, see Continuation Record
Techniques at the end of this appendix.

A.3.3 Element Format Records

Every element in a user's data record has a special
record in the data set defining its location and attributes.
These records are known as Element Format Records. Each is
a logical record containing in its key field, the name of
the element that it describes. The records are generated
along with the classification and control records by the FS

component, In addition to user-defined record elements
(Erom file structuring source statements) additional
elements appear in the logical record format as illustrated
in subsection A.2. These elements are generated
automatically during structuring for internal control
purposes. They have special names and their own

corresponding Element Format Records. The system-generated
elements and their purpose are listed belowu:

de +FIL - This element contains the first character in

the logical record key which contains "R."

This character is common to all data records

and is used to batch all data records as a
block within the 0S/360 data set.

b. +RCN - This element contains the total record control

group as found in the logical record key.

C. +PCN -~ This element contains the set ID field in
the key of the logical record.

d. +#SC (D) - This element redefines the subset control

group in the key for a specific subset logical

79

INTRODUCTION TO FILE CONCEPTS

e, +BSZ

f. PSSQ(n)

ge VSZ(n)

record. The fourth byte in the name(b) will
use binary notation to reference a specific

set; for example:

pRPPARP - Fixed Set
ppgggeEl - 1lst Periodic Set

papgeg1ld - 2nd Periodic Set

This element will occur immediately after the
key in a logical record {1 byte in length) and
will specify, via binary notation, the number
of binary fullwords within the logical record's
binary data block. '

This element definition is generated only for

those periodic sets which have not been defined
by the user to have a subset control field
(based on a data value). It identifies a four
byte field in the key of a logical record used
for subset sequencing within a periodic set.
The terrm (n) represents a one-to-three EBCDIC
character suffix used for periodic set identi-
fication; for example:

PSSQ25 will reference the subset
sequence field for a logical record
of Periodic Set 25.

This element is the first binary word in the
binary data block of a logical record (fixed

set or periodic subset). This binary word

will indicate the number of characters currently
contained in the logical record's variable
field. The characters indicated by (n) will
refer to the periodic set involved and are
stated using EBCDIC numbers. For example:

VSZ - Fixed Set
Vs215 - 15th Periodic Set

e

If there is nd variable field for a logical
record, this field (4 bytes) will contain
binary zeros.

80

- This element is a redefinition of VSZ(n)
element for the logical record containing
the first defined variable set.

Note: The system generated fields (a) through {e)
may only be used internally by the FFS component.
No analyst/user may conmunicate to component using
these names. In contrast, the field names PSSQ{n}),
vS5Z{(n) and VSCTL may be used by the analyst as a
method of controlling this particular run. The
use of the character (+) in the above names means
a byte consisting of binary zeros. For a complete
understanding of the use of the generated field
names, it may be best to refer to the description
of the data record found in section 2.

The remainder of this section 1llustrates the format and
contents of the element format record.

Repeated Group Possible

>
r —

.{L;Tm {8) __{5) _(6) {7) (8) (9) (10) {11through2l) (22)_,12_3)_1_2,5)_1@1

3)]

(1) Record Size Field
Length - Four bytes
Contents - First two bytes make up a binary
halfword providing the size of the
logical record. The last two bytes
are reserved for 0S5 use.

(2) Deletion Code Field
Length - One byte
Contents - All binary 1l's set by system if the
record is to be deleted from the data
set by the I/0 supervisor. Othervise
contents are immaterial.

INTRODUCTION TO FILE CONCEPTS

(3) Record Key : ;

Length . -~ Variable EBCDIC characters. Length
is standard for entire data set and
is dependent on the user specifica-
tions concerning the size of the
record control group and the periodic
control group (if defined).

Contents - See (4) and (5)

e e e s e ———

ey

{4) Record Type Field
Length - One byte EBCDIC
Contents - The character "F." This code defines
the logical record and an element

format record.

e e e

{5) Element Nane _

Length = Variable length EBCDIC characters.

Contents - Data record element name left-
justified within this portion of the
access key. If the element name is
less than seven characters,
it is padded to the right with blanks
until a total size of seven is reached.
After that, any remaining key padding
is done with zero bits. See Continua-
tion Record Techniques at end of
section for modifications on continua-
-tion records.

{6) Boundary Alignment Byte

Length - One byte if necessary

Contents - This is a slack byte which may appear
in the element format record. This
is used as padding to force all follow-
ing fields in the record to observe
half-word boundary alignment. Entry
12 of the control record is used to
point to the location immediately
folloving this byte indicating the
start of record data. (High-order address
of entry 7.) -

7

(8)

(2)

Dummy Parameter
Length - Four bytes
Contents - Nall characters normally.
Contains *'C' in high-order byte in
continuation records.

Element Set Identification
Length — One byte in binary notation
cOntents ~ PPPRIIIF - Fixed Set
20990971 -~ Periodic Set 1
PRgePILF - Periodic Set 2

Etc. .
Not used in continuation records.

Element Type identification

Length - One byte using binary notation

Contents - The element definition is accomplished
by the presence of bits in certain
locations of the byte. A bit turned
on vill contain a "l1l." A bit turned
off will contain a "0." The format
of the byte is as follows:

83

INTRODUCTION TO FILE CONCEPTS

Bit
No. 2123485617
2 ON - Field
OFF - _Group
ON - Field or dgroup is used for record or
subset control.
OFF - Non-control use
2 ON - System generated field/group
QFF_—= User-defined field/group
3 ON - Field/group may not be used by the
analyst,.
QFF - Fleld[gro_g_ls unrestricted
4 . ON - Fixed Length Field
OFF_- Not Fixed Lenqth _
5 ON - Variable Length Field :
OFF - _ Non-variable lenqgth
6 ON - Variable set field
OFF_- Non—variable _set field
7 Alwvays pf.

21234567
31981988

The file format record describes the user
defined record control group. The field
is not used in continuvation records.

84

http:2ll_::_fie!gLg~2!llL..ia

The hex values of this byte for all element
types are summarized belovw.

A. System Generated Elements:

+FIL

+BCN X1F8*
+PCN

+5C (B)

YSCTL X*A8*
VSZ (n)

pPSso{n)- X'E8°
+BSZ - X1B8!

B. User-Defined Elements:

Noncontrol field - xX*88"
Noncontrol group - X'08¢
variable set name - X*82°"
variable field - Xv84¢*
control field - Xvcsa*
Control grouap - Xr48?

(10) High-Order Location of Element 1in Logical Record
Length -~ Four bytes using EBCDIC notation
Contents - Location is relative to the high-order
byte of the record size field which
'ijs based at zero. Null characters
" in continuation records.

(11) Length of Element in Logical Record '
Length - Three bytes using EBCDIC notation
Contents - {A) Length is specified for the
' nunber of alphameric characters

represented. For alphameric
mode elements (A), this will be
the actual number of bytes
appearing in the data record.
For numeric mode elements (B}, a
binary word (4 bytes) will appear

85

INTRODUCTION TO FILE CONCEPTS

in the logical record regardless
of the length specified. For
decimal mode elements (D), this
value will be the actual number
- of bytes in the logical record.
See paragraph (12) below for a
discussion on element modes.

If this is a variable field, the

entry will contain the number of

characters per line to be printed
during output.

If this is a variable set field,
the length is as specified in the
VSET FS statement.

Coordinate mode elements are
handled in a special manner.

‘The size appearing in {11) depends
on certain circumstances. The
elenent format records generated
to define coordinate fields/groups
are similar to other user-defined
fields/groups with the following
exceptions noted:

ALL FIELDS defined for
coordinate use will carry
the external decimal -
length value {i.e.,
length as defined by user
in the FS FIELD
statement) in the element
format as parameter {11).
All GROOPS defined for
coordinate use will carry
the external decimal
length value (i.e., the
sumr of the user specified
length for each field
defined in the group) in
the element format

record. For example, 1if
POINT 1is defined as a
field of length 11,
representing both
latitude and longitude,
the length carried 1in
entry 11 of the element
format record will be 11.
If POINT is defined as a
group of two fields of
length 5 and 6
characters, the l2ngth of
the group will be
specified 1in the element
format record as 11
(representing the sum of
the two fields).

Three cases and their handling during FS

Case 1 — A user defines a single coordinate field
intending to store both latitude and longitude
values in it. The field will be either 11 or 15
characters in length depending on the precision

desired.

The FS component will cause a single element fornat
to be built with the name as supplied by the user.
However, this record will define two adjacent
binary words in the block portion of the 1logical
record, and will address the high-order byte of the
left-most word, The length of the coordinate field
will be specified as either 11 or 15 characters as
defined by the analyst 1in parameter 11 of the
element format record.

Case 2 -~ A user defines two fields of length 5 (7)
and 6 (8) characters intending to identify latitude
and longitude separately. 1In addition, a group is
defined as containing these two fields.

87

INTRODUCTION TO FILE CONCEPTS

The FS component will cause two adjacent binary
fields to be generated, with an elenment format
record for each. The contents of the element
format record describing each field will be as in
case one, except that the field length entry {11)
will describe only the user—-specified length for
that field. The group format record will contain
the sum of the user-specified length of each field
defined in the group.

case 3 - A user has defined several sets of
coordinates by the method of case one or case two,
as discussed previously. In additiom, he define-
this collection as a group.

In addition +to the element format records generéted as
in cases one or two, the FS component will generate a
group format record describing this collection of
fields. Parameter 11 in the group format record will
state in bytes the space needed for binary words. This
field is filled with null characters in continuation

records.

(12) Element Mode Specification

Length - One byte using EBCDIC notation

Coritents - Alphameric mode element.
Numeric mode element.
Coordinate mode element.
Decimal mode element {this occurs
when numeric fields are included
within a group definition). All
system-generated elements are
defined as alphameric mode.
Null characters in continuation
records.

(13) Input Subroutine Conversion Name
Length ~ Eight bytes EBCDIC ,
Contents - Subroutine name left-justified.
Zero bits if no conversion on input.
Asterisk (¥) left justified if element
is coordinate mode and has external
length of 5, 6, 7, 8, 11, or 15. This

88

invokes automatically a standard
system conversion subroutine.
Null characters in continuation
records.

Qutput Subroutine Conversion Name
Length - Eight bytes EBCDIC
Contents - Subroutine name left-justified.
Zero bits if no conversion on output.
Asterisk left-justified, same as (l13).
Null characters in contlnuatlon
records.

High-order Location of element label in this
format record.
Length ~ Binary halfword
Contents ~ Location specification sanme as {10)
if label present.
All zer> bits for no label.
Null characters in continuation

records.

Length of element Label in this element format record
Length - Binary halfword
Contents - Size if label exists.
All zero bits if no label.
Null characters in continuation

Tecords.

High-Order Location of Edit Mask this Element Format
Record ,
Length -~ Binary halfword
Contents - location specification same as (8)
if pattern assigned to element
during file structuring.
All zero bits if no pattern.
Null characters in continuation
records.

Length of Edit Mask in this element format record
Length - Binary halfword
Contents - Size if pattern assigned to element
during file structuring.

INTRODUCTION TO FILE CONCEPTS

All zero bits if no editing is used.
Null characters in continuation
records.

Note: When edit masks appear in element format records,
they are in FFS edit pattern form. ‘ :

(19) Size of Element on Output

Leagth - Binary halfword

Contents - This field contains the size {in
bytes) for output.
If output conversion is used, the
size of the subroutine output is
provided.
Null characters 1n continuation

records.

(20) High~-Order Location of the String of Field Nanmes in
the Recotd Making up the Group
Length - Binary halfword

Contents - Location specification same as {10)

if required. :
All zero bits are used if entry is

not a group.
Null characters in continuation

records.

(21) Number of Fields Making up the Group
Length - Binary halfword
Contents - Size if requirement exists.
A1l zer> bits if not required.

All the following entries are optional and/hre used if required.

{22) Field Label Used for Output
Length ~ Variable ({EBCDIC Character)

Contents - User-assigned label name
Not used in continuation records..

(23) Edit Mask Pattern
Length ~ variable (EBCDIC Characters)

Contents - Edit pattern.
Not used in continuation records.,

90

INTRODUCTION TO FILE CONCEPTS

Field Name within Group . .
Length - Eight bytes EBCDIC
Contents - Field nanme left-justified

High Order Location of Field in Logical Record
Length —~ Four bytes in EBCDIC notation
Contents - Location specification sanme as {l10).

Length of Field in Logical Record
Length =~ Three bytes in EBCDIC notation
Contents - Length specification same as (11).

Character Set Specification
Length - One byte EBCDIC
Contents - A - alphameric field (EBCDIC)
-D - decimal field (EBCDIC).

Note: Fields 24-25-26-27 may appear as multiple entries
specifying from left to right the fields making up the
group for which the current record is identifying. 1all
system generated fields will use entries (1) through
(10) with the exception of #+RCN and +SC(B) which will
list all user-defined fields making up the control group
vith entries (20), (21) , and (24) through (27).

h.3.4 Continuation Record Techniques

There are occasions when the data contents of the
control record and group format records may exceed the 1,000
byte logical record size allowed in the 05/360 data set.
This section describes the manner in which the File
Structuring Component will handle such cases.

A.3.4.1 Continuation Records for the FFT Control Record

Because of the logical record length limitations, the
Control Record will only be able to supply information on a
maximum of 179 periodic sets. Since the system has been
designed to handle, theoretically, up to 255 Periodic Sets
for each named data set, it becomes necessary to provide a
continuation record when the number of periodic sets defined

INTRODUCTION TO FILE CONCEPTS

by the user exceeds 179. When such a case occurs, a second
control record will be created to continue the information
on periodic sets {entries 17-18-19).

The primary (first) control record will specify the.
total number of Periodic Sets that it defines in entry 1l.
The high-order byte of entry 13 will contain the character
wcw indicating that a continuation record follows. The
secondary control record will have the same format as the
primary. However, it will have the character "C" in its key
immediately following the record type field (entry 3).. The
entries 5-10 and 12-16 will not be maintained, but their
length is the same as in the primary. Entry 11 will contain
the number of periodic sets defined by the secondary record.
entries 17, 18, and 19 will be used and repeated until all
Periodic Sets have been accounted for.

A.3.4.2 Continuation Records for Group Format Records

similar to the problem faced by the control record, the
element format record for a group may experience overflov
cases. This overflow of data results from the series of
entries which lists each field (group) contained within the
defined group. The following table illustrates the number
of fields that a group format record may define using a
single logical record. -

0S Fields five bytes

FFT ‘Record Key from 8 to 255 bytes

RECORD Pixed Entries 40 bytes

ENTRY
LENGTHS Field/group label from 0 to 132 bytes

Edit Pattern from 0 to 132 bytes

Field Length specs
in group format record 16 bytes per field

Worst case assuming max key, label, and edit length will
allow 27 fields (groups) to be defined as a single
group within a 1,000 byte record.

IR —— =

b. Best case assuming min key, and no label or edit pattern,
will allow 59 fields {groups).

ypical case with key length of 15 bytes, label length of
8 bytes, and edit length of 8 bytes will allow .57

fields {(groups).

C.

-2

When a continuation record is generated, entry 21 in the
primary record will state only the number of fields that it
lists. The high-order byte of entry 7 will contain the
character "C" to indicate that continuation record {s)
follow. The continuation records will have the same format
as the primary. However entries 8 through 20 will not
contain valid data and entries 22 and 23 will not appear.
The secondary record key will contain the group name, as
usual, but will be suffixed by an eighth byte using binary
notation to indicate the number of the continuation record.
The first continuation record would contain "1" in binary
and so forth. Entry 21 in the <contihuation record will
contain a number indicating how many fields are contained in

the list of entries 24, 25, 26, and 27.

93

DISTRIBUTION
for
CSM UM 15B-68

NMCSSC CODES | | COPIES

Blll (COR fOr CSC)===mmemecrcreccecccccccc e c e e ——— 20
"Bl1l1l (COR for IBM)===memeercmrecccccccccecccccenne-en—- 20
Bll2-wcreer e n e rcr e e e e e - e e e -
Bl21 (Reference)====reereccrerccrcncccerrececcceneeae-

- - Bl21 (Record COpy) ===——=m e c e c e a e cn e e r e e e e a-

‘B420m=mmcmm e e et e e ————— -—-
-B430 -Maintenance {In house)===-=-erecarccnccccccrcac
B430 Maintenance (Contractor)==-ececccccccccccccacan=
B430 Development (Contractor)=-=---acccccccccccncca=
B430 (CINC/SER Support)-——-=-==ecccccocccccccceaccceex
‘B430 (Stock)==-==memecrcnccn e crccra e n e e cen e 7
B500 (Tech Ser Support)====-ceccecrccccccccccwncccac- :

H

DCA CODE

EXTERNAL

Director for Operations, J=3, ATT: Director for
Reconnaissance; Room 2D=921, Pentagon;
Washington, D.C. 2030l-=====cccccacca e e —————— 1

Director, J-4, Office Joint Chiefs of staff;
Room 2E-828, Pentagon; Washington, D.C. 2030]l-~remmw=- 1

0JCS, J-3 PNAD; Room 2B870
Pentagon; Washington, D.C,======--r-ercmercorecren—co—

94

EXTERNAL - COPIES

NMCS Division, J-3; Office of Joint Chiefs of Staff;
Room 2C0869, Pentagon; Washington, D.C. 2030l---ceee- 2

Director of Administrative Services, OJCS~-DAS;
- ATT: Personnel Division; Room- 2A-944, Pentagon;
Washington, D.C. 2030l-=--em=a —————— ———e—meee——— e |

Defense Documentation Center; Cameron Station:
Alexandria, Virginia 22314-e-eecmmccacaaoaaaoa. e V.

‘Director, Defense Intelligence Agency; ATT: DS;SCZ
Washington, D.C. 2030l==c=c=mocm e -= 150

Commander in Chief, United States European Command;
. ATT: ECJC-DP; APO New York 09]128«-cccccecmcccccccccan= 10

‘Commander in Chief, Pacific; ATT: JO2C; Box 32A
FPO San Francisco 96610-=-emm—meecaeaa ————————— m——=--e= 30

Automatic Data Processing Division Supreme Head-
quarters Allied Powers, Europe; ATT: SA & P Branch;
APO New York 09055-=-wcececcaaan e ——————-———————— 25

U.S. Military Assistance Command, Vietnam;
ATT: Chief, Data Management Agency;
"APO San Francisco 96222-==—=cemmmmmmmccmccccac e 20

- Commander in Chief; Continental ‘Air Defense Command;
ATT: CICA-P; Ent AFB, Colorado 809]12==ceeecccccmcana- 3

Commander in Chief; United States Army, Europe and
Seventh Army; ATT: ODCS, OPS; APO New York 09403-==-- 2

Hgq. U.S. Marine Corps ATT: System Design/Programming
Branch Code AP-1ll; Washington, D.C. 20380-—-—=emeececa- 5

AFXOXSC, System Programming Section; USAF Command Post;
Room BF-915A, Pentagon; Washington, D.C, 20330-====== 10

USAF Tactical Air Command; ATT: IND; Langley AFB,

Virginia 23365-====ceccccanaaaa e memcce———— ————————— 3
Department of the Air Force; Task Force Alpha (PACAF);

ATT: TOSN; APO San Francisco 96310-==r-emmecceccacaa ———— 1
Hq Pacific Air Forces; ATT: DOYP; X

APO San Francisco 96553

95

" COPIES

)
’

Georgia 3060l---—======—=======sso==s

Ly
o
o
-
m
YW
o
>
y e
o
L]
o
>
-t
=
o’
L
i
~
a
=2
=
O
H
Lo
«
m
Q
Por}
=
2]
O
o

Athens,

1

.
’

Virginia 2335l-—-===-=========so-oss

Hq, USCONARC; ATT: ATOPS-CC

Fort Monroe,

96

UNCLASSIFIED

Security Classiﬁcatio= .

! ' DOCUMEMNT COMTROL DATA-R&D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report Is classified)

4‘

1. ORIUNATING ACTIVITY (Co:ponu nuthor) 28, REPORY SECURITY CLASSIFICATION
NM(SSC/International Business Machines Corporation _ UNCLASSIFIED
2b. GROUP
NONE

3. REP(RT TITLE

National Military Command System Information Processing System (NIPS), System 369
Fomatted File System, Volume I, Introduction to File Concepts

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

8. AU THOR(S) (Firet name, middle initial, last name)

Various
6. REFPORT DATE) 78. TOTAL NO. OF PAGES 7b. NO. OF REFS
1 July 1971 103 0
84. CONTRACT OR GRANT NO. 98, ORIGINATOR'S REPORT NUMBERI(S)
"DCA 100-70~-C-0031 CSM UM 15B-68, Vol I, Introduction to

b, PROJECT NO. File Concepts

<, 9b. OTHER REPORT NO(S) (Any other numbers that may be aselgned
thie report)

d.

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sa]e, its distribution is
unlimited.

12. SPONSORING MILITARY ACTIVITY

National Military Command System Support
Center, Room BE-685, The Pentagon
Washington, D.C. 20301

t1. SUPPLEMENTARY NOTES

13. ABSTRACT

This volume presents System Concepts and System Use; it shows a sample NIPS 360 FFS
Data File, the Glossary of Terms, and a description of the NIPS 360 FFS Data File

and file Format Table,

The NIPS 360 is the total system composed of the S/360 hardware and S/360 Operating
System (0S) used to support NIPS 360 FFS software.

This document supersedes CSM UM 15A-68, Volume I.
Other volumes in this series are:

CSM UM 15B-65 Vol II File Structuring (FS)

Vol III -~ File Maintenance (FM)

Vol IV - Retrieval and Sort Processor (RASP)
Vol V - Output Processor (OP)

Vol VI - Terminal Processing (TP)

Vol VII - Utility Support (UT)

Vol VIII - Job Preparation Manual

Vol IX - Error Codes

Installation of NIPS 360 FFS

TR 54A-70
General Description

CSM GD 15A-68

DD .'.."0'3‘..1473 Sessldve B34 JRuy Uga! AN 04 THEn W UNCLASSIFIED
97 , T Security Clasalfication

http:O.SOI.ET

Secﬁﬁty %\lauy%catlon

14. N LINK A LINK B LINK €
- KEY WORDS
. ROLE wT ROLE wT ROLE wT
I ~ ny
' , UNCLASSIFIED
98 (\ Security Classification

L U.-é. GOVERNMENT PRINTING OFFICE: 1971-441-524/280

	205_1ad-0002
	205_1ad-0003
	205_1ad-0004
	205_1ad-0005
	205_1ad-0006
	205_1ad-0007
	205_1ad-0008
	205_1ad-0009
	205_1ad-0010
	205_1ad-0011
	205_1ad-0012
	205_1ad-0013
	205_1ad-0014
	205_1ad-0015
	205_1ad-0016
	205_1ad-0017
	205_1ad-0018
	205_1ad-0019
	205_1ad-0020
	205_1ad-0021
	205_1ad-0022
	205_1ad-0023
	205_1ad-0024
	205_1ad-0025
	205_1ad-0026
	205_1ad-0027
	205_1ad-0028
	205_1ad-0029
	205_1ad-0030
	205_1ad-0031
	205_1ad-0032
	205_1ad-0033
	205_1ad-0034
	205_1ad-0035
	205_1ad-0036
	205_1ad-0037
	205_1ad-0038
	205_1ad-0039
	205_1ad-0040
	205_1ad-0041
	205_1ad-0042
	205_1ad-0043
	205_1ad-0044
	205_1ad-0045
	205_1ad-0046
	205_1ad-0047
	205_1ad-0048
	205_1ad-0049
	205_1ad-0050
	205_1ad-0051
	205_1ad-0052
	205_1ad-0053
	205_1ad-0054
	205_1ad-0055
	205_1ad-0056
	205_1ad-0057
	205_1ad-0058
	205_1ad-0059
	205_1ad-0060
	205_1ad-0061
	205_1ad-0062
	205_1ad-0063
	205_1ad-0064
	205_1ad-0065
	205_1ad-0066
	205_1ad-0067
	205_1ad-0068
	205_1ad-0069
	205_1ad-0070
	205_1ad-0071
	205_1ad-0072
	205_1ad-0073
	205_1ad-0074
	205_1ad-0075
	205_1ad-0076
	205_1ad-0077
	205_1ad-0078
	205_1ad-0079
	205_1ad-0080
	205_1ad-0081
	205_1ad-0082
	205_1ad-0083
	205_1ad-0084
	205_1ad-0085
	205_1ad-0086
	205_1ad-0087
	205_1ad-0088
	205_1ad-0089
	205_1ad-0090
	205_1ad-0091
	205_1ad-0092
	205_1ad-0093
	205_1ad-0094
	205_1ad-0095
	205_1ad-0096
	205_1ad-0097
	205_1ad-0098
	205_1ad-0099
	205_1ad-0100
	205_1ad-0101
	205_1ad-0102
	205_1ad-0103
	205_1ad-0104
	205_1ad-0105
	205_1ad-0106
	205_1ad-0107
	205_1ad-0108

