
• & D— A 054 203 NATIONAL M I L I T A R Y COIII AIC SYSTE II S3.flOIT CENTER Wfl H—(TC FF6 IF1
NATIONAL MILITARY COMMAND SYSTEfr INF ORMATION PQOCESSINS SYSTEM ETC (U)
.RJN 76

NCI.ASSIFZED MScS1C’TR 1171CiWISifl Id.

II. I
__ I t T

_
I

D O I ’
I I I ~~Th

I.

- --.
~~~

• r~ L 2 1  11 2.5
I.L? L

________________ 

I~ ~~ 2.2

• 
•~

((((( 1.8

I .25 
flfl~

I.4 HU h .6

MICROCOPY RESOLUTION TEST CHART
NAt IO NAL BUREAU OF STANDARDS A A



I
DEFENSE COMMUNICATIONS AGENCY / k17 COMMAND AND CONTROL

~~~~~~~ 1 curl
National Military ~o~~and System Informa — I I Ition Processing S~~ tem 360 Porma tted File ~~~~~~~ W ~~~~~~~
H~ndbook. Change

S). N IPS Processing

TO: DISTRIBUTION

SUBJECT: Change 1 to TR 80-72, NIPS Processing Handbook,
dated 1. February 1973

~ ~~/ ; L;/ ~ ’~~’’~ 1~
1. Insert~ the enclosed change pages and destroy the

~~~ replaced pages according to applicable security
regulations.

2. A list of Effective Pages to verify the accuracy
of this handbook is enclosed. This list should 

~~~~~~~~~~~~~~~ ~inserted before the title page.

3. When this change has been posted, make an ent ~1~1 14 1978
in the Record of Changes on the inside cover.

FOR ThE DIRECT01~

A

Change 1 pages sistant t irector
C..) for Administration

LU
—J

[Thismmm~1ON ST~PE111~WY_ !1
Apptov d fo~ public re~ec$~

Distr~bUti0u (Jnhmd.d ~~

7??6 ~1~~t~I

~)L / - ~
-

~~ —~~~~~~~~:~~~~~~~~~~~~~ -_—- —

EFFECTIVE PAGES - 10 JUNE 1976

This list is used to verify the accuracy of TR 80-72

after change pages have been inserted. Original pages

are indicated by the letter 0, change 1 by the numeral 1.

Page No. Change No.

TITLE 0
ii 0
iii—x 1

1—22 0

23—24.2 1

25—26 0

27—36. 1 1
37—38 0

39—42.1 1

43—128 0

129—130 1

131—132 0

133—134.2 1

135—188 0
189—190 1 .

191—200 0 ~~~~~~~~~~~~~~~~~~~ 7

201—215.2 1
,u- k,

~
v.

~

I,
sliM

.

~

.~~~~~~~~~~~
-— _ _ .___

CONTENTS

Section Page

ACKN0WLE~~~~~NT ii

ABSTRACT . . . x

1 INTRODUCTION 1

2 NIPS PROCESSING OVERVIEW 4
2.1 File Structuring 4
2 .2 File Revision . . . 6
2.3 File Maintenance . 8
2.3.1 FM lnitialization 8
2 . 3 . 2 Logic Statement Compilation and

Library Maintenance 10
2.3.3 Transaction Processor 11
2.3.4 File Generation and Maintenance 12
2.3.5 Auxiliary Output Processor 13
2.4 Retrieval and Sort Processor 1.3
2.5 Output Processor 15
2.6 Quick Inquiry Processor . . 17

3 NIPS FILE DESIGN 21
3.1 Tasking Considerations 21
3.2 Response Considerations 22
3.2.1 File Organization 22
3. 2 . 1.1 File Generation • 23
3.2.1.2 File Update 23
#3.2.1.3 Retrieval 24
3.2.1.4 Terminai Processing . 25
3.2.1.5 NIPS Utilities 25
3.2.2 Inquiry Processing 27
#3.2.3 Secondary lndexing 28
#3.2.4 Keyword Indexing.. 35.].
#3.2.4.1 Scan Subroutine 35.1
#3.2.4.2 Stopword Tables 35.4
#3.2.4.3 Dictionary Tables 35. 4
#3.2.4.4 Data File Creation and Update . 35.5
#3.2.4.5 Data File Analysis 35.6
#3.2.4.6 Indexing the Data File 35.9
#3.2.4.7 Maintenance Considerations 35.11
3.2.5 File Segmer~tation 35.1i.

iii

CH -1

— .. . — .. S —

Section Page

3.3 File Field Specification . 36
3.3.1 Control Field Considerations 36
3.3.2 Other Considerations 38
3.4 Size Considerations 39
#3.4.1 File Size 39
3. 4.2 Record Size . ‘41. 3
3.4.3 Set Size • ‘42
3. 4. 4 Field Size 43
3.5 Future File Operations 44
3.6 Multifile Operations 48
3.7 Large File Processing..... 50

14 Processing Techniques and
LANGUAGE CHARACTER ISTICS 51

4.1 File Maintenance (FM) . 51
4.1.1 Eff ic ient Processing Practices 51
4.1.1.1 File Library U t il i z a t i o n 51
4.1.1.2 Use of FM PARM Options 51
4. 1.1.3 Control Card Verification 53
4.1.1.14 Structured Code . 53
14.1.1.5 Presequenced Transactions 54
4.1.2 File Organization ... 57
4.1.2.1 ISAM File Processing 57
4.1.2,1.l lSAM Fjle Pad Records 57
4.1.2.]..2 Percent of File Updated 58
4.1.2.1.3 Test for Record Changes 58
4.1.2.1.4 Changing the Record Control Group 59
4.1.2.1.5 ISAM Overflow Full 60
4.1.3 Processing Options 60
4.1.3.1 Update Methods • • • 61
4.1.3.2 Language Selection 63
4.1.3.3 Indirect Addressing 65
4.1.4 FM Control Specifications 68
4.1.4.1 Transaction Sources 69
4.1.4.2 Logic Statement Control 71
4.1.4 • 2.1 Logic Statement Replacement 71
4.1.4.3 Ordered Execution of Logic Statements 73
4.1.5 File Update . . • • • • • . •. • • • . . . 74
4.1.5.1 Data Field lnitializatiOn.................. 711
4.1.5.2 Periodic Data • . . . • 75
4.1.5.3 Variable Data . 76
4.2 Retrieval and Sort Processor (RASP) 79
4.2.1 Efficient Processing Practices 79
4.2.1.1 File Library Uttlizatiofl 79
LI • 2 .1 . 2 Skeleton Queries . . . • . • . 80
4.2.1.3 RA SP PARM Options . . • • 80
4.2.1.4 LIMIT• • •.. I • • • 8].
4.2.1.5 Secondary Indexing 82
4 • 2 • 1 . 6 SELECT . • . 8 3

iv CM-i

.~~, —~~~
. /

Section Page

4.2.2 General Language Characteristics 83
4.2.2.1 Stored Retrieval Naming Conventions • .~~~~~ 83
4.2.2.2 RASP Answer File (QRT/QDF) 84
4.2.2.3 QRT/QDF User Names 87
4.2.2.4 Skeleton Retrieval Substitution 90
4.2.3 Retrieving Periodic Data • 90
4.2.3.1 Subset Scanning 90
4. 2 • 3.2 ANY Modifier • . • 92
4. 2 .3. 3 Set Absence 95
4.2.3.4 Indirect Addressing 96
4.2.11 Sorting Periodic Data...... 96
4.2.5 RASP/OP Interface 98
14.3 Output Processor (OP) 99
4.3.1 Efficient Processing Practices • 99
4.3.1.1 File Library Utilization . . . 100
4. 3. 1.2 Op PARM Options 100
4.3.1.3 Interfile Output (IFO) •• 101
4.3.1.4 OMIT • 101
4.3.2 General Language Characteristics 103
4.3.2.1 RIT Code Structure and Execution • . • 103
4. 3 . 2. 2 Literals . • . . • • 104
4.3.2.3 Action Statements,.. 106
(4,3.2.14 Alphabetic Suffixing.... 108
4.3.2.5 Printing Variable Fields and Sets 109
4.3.2.6 Conditional Logic . 110
14.3.2.6.1 Conditional Clauses 110
4. 3. 2 • 6.2 IF. . .CHANGES 112
4 . 3 • 2 • 6 . 3 IF. . . COMPLETE • 114
4.3.2.7 Format Control . . • . 115
4.3.2.8 Arithmetic Operations 118
4.3.2.9 DATA ERROR Message Analysis 120
L 4 • 4 Quick Inquiry Processor (QUIP) 121
4.4.1 General Language Characteristics 121
4.4.2 Use of QUIP PARM Options ... 121
4 . 4, 3 QUIP Retrieval • . . . • 122
4.4.3.1 LIMIT •. .•...•.... 122
4.4.3.2 Partial Fjeld Notation 1214
4.4.3.3 Skeleton Query Substitution 124
4 • 4. 3. 14 COUNT . . • . . • . • • . . . • . . . • 125

5 TERMINAL ENVIRONMENT ...• 126
5.1 Input/Output Considerations • •. . . . 127
5.1.1 Tailor File for TP Application 127
#5.1.2 Data Set Contention.................... 128
5.1.3 Terminal vs Batch Applications.......... 129
5.1.4 Restricting File Search

v CM-i

- - - - p

- S —~~~~

Section Page

5.2 Terminal Operating Techniques 130
5.2.1 General TP Procedures 130
5.2.2 Correction Messages .. 13l
5.2.3 Scratching the lMQ ... 131
5.2.4 Remote Job Entry (RJE) 131
5.2.5 Access to EMQ and OMQ 13(4
#5.2.6 Record iD Retrieval 134
#5.2.7 VIEW Program • 134

6 OPERATING SYSTEM INTERFACE 135
6.1 NIPS Data Set SPACE Requirements 135
6.2 Region/Partition Size 139
6.3 Uge of Standard Labels 142
6.4 Qualified Data Set Names 142
6.5 Variable lilock Size 1143
6.6 NIPS Sorting Considerations 1144
6.7 Multistep Job Execution 145
6.8 Data Base and System Structure 145

Appendix A NIPS Statement Continuation Conventinn~ . 147A.1 File Structuring (FS) .147
A .2 File Revision (FR) .147
A .3 Fjle Majntenance (FM) 152
A.4 Retrieval and Sort Processor (RASP) 152
A.5 Output Processor (OP)
A.6 Quick Inquiry Processor (QUIP) 155
A.7 Source Data Automation (SODA) 155
A.8 Table Generation Utility (TABGEN) 158

Appendix B Data Mode Storage Characteristics 161

Appendix C Process Block Characteristics . 164

Appendix D NIPS Procedure Space Usage 168

Appendix E Writing Terminal Processing (TP)
Application Programs 170

E.1 Monitor Generation . 170
E.2 Tutorial on Writing TP Programs . 172
E.3 Use of Signon Programs 182
E.4 TP Program Initializer Modules 187
E.5 Use of COBOL and PL/l 188
E.5.l (Jse of lFGET Routine

vi CH-1

- I - - - - —
. - - —

Section Page

E.5.2 Use of IFPUT Routine 192
E.5.3 Use of IFEOJ Routine 192
E.6 Guide for COBOL Programmers 19L4
E.7 Deferred Paging 195
E.8 Referencing the Output Queue 198
E.,9 Inter-Terminal Communication 199

—

INDEX 203

DISTRIBUTION 216

DD Form 1473 220

vii CH 1

- — -—- - S -
-~~~~~~~~

. - . —
~~~~

- I  - - S  

—

~~~~~~~~~~~~~~ -

-
- - -~~~~

ILLUSTRATIONS

Figure Page

1 FS Execution 5
2 File Revision Process 7
3 File Maintenance Overview 9
4 Retrieval and Sort Processor Overview 14
5 Output Processor Overview 16
6 QUIP Overvie~, 20
7 Index Data Set 30
8 History File Procedure 41
9 Statistics Before Tai loring Core 47

10 Statistics After Tailoring Core 47
11 Structured NFL Code 55
12 Structured OM Code 56
1.3 EXCEPTION and SUBSET EXCEPTION

Logic Statements 62
iLl OM , NFL , and POOL Comparison 66
15 Interset Conununication 77
16 RASP OP Answer Entry Record (ROAER) 86
17 COUNT Examples 119
18 FS Coding Example 150
19 FR Coding Example .
20 FM Coding Example
21 RASP Coding Example 154
22 OP Coding Example 156
23 QUlP Coding Example ... 157
24 SODA Coding Example 159
25 TABGEN Coding Example 160
26 Summary of Supervisor Interfaces 175
27 Summary of Display Control Characters 178
28 Sample Prob lern Program 180
29 Sample Program - Message to Operator 183
30 COBOL Interface with GET , PUT , EXIT ... 189
31 COBOL Data Divj sj on .

viii CM- i

_ _ _ _ _ _ _ _ - -- .-

-
_ i_ -:

TABLES

Table Page

1 NIPS Continuation Characteristics 148
2 Storage Characteristics • . 163
3 Characteristics of Major Components 165
4 DDNAME Characteristi cs . 169

ix CH-1

-. —-——--q——-- -------- - — —~~~~~~~~~ .. - —

—.—-.—--— . 1 — —. -. 5 — —

ABSTRACT

-
~~~ -i- Th is ~r

’echnical ~R~port identifies and documents charac-
teristics of the many factors affect ing NIPS performance which
should be considered when defining a NIPS file and coding NIPS
procedures. This is a supplement to and not a substitute for
the following NIPS user documentation :

CSM UM 15B 60 ;Vol I - Introduction to File Concepts
Vol II - File Structuring (PS )

~~~~~~~~~~~~~~~~~~~~~~ —~- I ~~i,Vol III - File Maintenance (FM)
.‘Vol IV - Retrieval and Sort Processor (RASP)

Vol V - Output Processor COP)
Vol VI - Terminal Processing (TP)
Vol VII - Utility Support (UT)

/ Vol VIII - Job Preparation Manual
Vol IX - Error Codes

~CSM GD 15A-68-- — ---- - ~ General Description1 ~~~~~~~~~~

TR 5LIA— 70 — — ~ Installation of NIPS 360 FF5 .

k

X CH-1

—--.- ---,-- _ _ _ _ _ _ _ _ _. - - — -- - ---- —_ -

1. Percent of f i le updated
2. ISAM records in overflow
3. Change or add data
4 . ISAM pad records

c. Retrieval
1. Percent of file searched
2. ISAM records in overflow

d. Terminal Processing Requirements

e. File Backup Requirements

3.2.1.1 File Generation

File generation normally is more e f f i c i en t for a SAM f i le
than for an ISAM fi le . Each SAM f i le record can be written
in sequence without the ISAM processing overhead , such as
maintenance of cylinder and track indexes and generation
of pad records .

3 .2 .1 .2 File Update

The percent of the file updated is a major factor in
determining the relative efficiency of updating SAM and
ISAM files. If a relatively small portion of the file is
to be updated , ISAM generally will be more eff icient than
SAM , since only those records changed or added are accessed.
As the percentage of the f i le updated increases , the relative
advantage of ISAM over SAM decreases, until the point is
reached where SAM processing becomes more efficient.

The number of records written to the overflow area
a f fects the eff iciency of ISAM processing , and hence, its
efficiency when compared with SAM processing . Changes to
ISAM file fields will normally not cause overflow records ,
since these changes replace existing data. The effect of
adding new data depends on the location of the data in
the file. If data is added between existing logical records
in the file , ISAM processing normally causes either the
new or exis ting logical records to be written to the overflow
area. If new records are added to the end of an ISAM file,
generation of overflow records depends on the record IDs

23 CR-i

of the pad records at the end of the f i le . Pad records are
generated at the end of an ISAM file with keys greater
than the highest record created , and these keys are incremented
based on the record IDs that were created. Only si” pad
records , blocked at 1000 bytes, will fit on a 2314 track .
Therefore , if all new records within the range of the high
and low keys to be placed on each pad record track do not
fit, some of the new records must be written to the overflow
area.

- Occasionally , a programmer generates an ISAM file with
only a small portion (e .g . , 10 percent) of the data records
in order to thoroughly review the results prior to adding
the remainder of the data. Performing an ISAN update to
add the remaining data (e .g . , 90 percent) to the fi le will
be very inefficient, and possibly terminate because of
lack of space . The probability of the new records being
forced to the overflow area is increased , since the algorithm
developing the records IDs of the pad records was based
on a small sampling (initial generation) of the total data
records . The run terminates if the data writ ten to the
overflow area exceeds the overflow space allocated.

3.2.1.3 Retrieval

Two techniques exist in RASP and QUIP which can limit
the portion of the file which must be searched . They are:

a. LIMIT

b. SECONDARY INDEXING .

Both techniques permit the retrieval component to access
only a range of records or specific records based on record
IDs. Retrieval from an ISAM file will normally be more efficient
if LIMIT or secondary indexing can be used. These techniques
will be less effective for a SAM file, since each data record
must be read up through the upper limit of the LIMIT range,
or the highest record ID for secondary indexing candidate
records.

24 cH-l

-- ~~~~ - - -- .-~~~~~~~~~ -- - - - - - ----—- - _ _ _ _ _

* When a batch output job is required to access an
entire NIPS file (no LIMIT or indexing is used), SAM f i le~
processing is usually faster than ISAN . In one test, the -

- execution time required by RASP and OP to process an ISAM
file with overflow records was 2 hours and 17 minutes. After
the file was reorganized and the overflow records were placed
in the prime data area, the ISAM processing time was reduceçl
to 35 minutes . When a SAM version of the file was processed~by the same RASP and OP job steps , the execution time was
reduced to less than 13 minutes . A twelvefold decrease run
time between processing an unorganized ISNI file and a SAM
file was observed in this test. Similar results have been
shown in other tests . The processing of ISAM files con-
taining a significant number of records in the overflow
area will adversely affect the processing efficiency of
both RASP and QUIP. Thus , before starting any extensive
batch output cycle from an ISAM file , the file should be
reorganized .

24.1 CH—l

-- ~~— .- . .

3 . 2 . 2 Inquiry Processing

Normally , response requirements are imposed on the
information retrieval operations against a file. The file
must be designed to satisfy these requi rements .

Response requirements may take two forms-—time require-
,znents and format requirements. Stringent time requirements
may dictate an on-line data base, while less rigid requir ements
may leave the designer free to choose. Similarly , complex
format requirements may dictate the use of the more general
and powerful output processor , while a simpler format could
be satisfied by a QUIP-published product . The requirement
for a complex report in a very short time could present
operational prob lems if special considerations are not made .

Two methods are available for processing inquiries
against NIPS data files: QUIP , the on-line (or batch)
retrieval/output component , and RASP/OP , the more powerful
data retrieval and output tandem that on ly operates in
the batch mode. Although both perform similar functions ,
they satisfy dif ferent requirements . QUIP satisfies on-
line retrieval and output requirements and provides a quick
and simple batch capability. RASP/OP is a powerful capability
that permits more complex processing than does QUIP .

In the batch environment , the user may select which
method to use . QUIP employs interpretive processing techniques
and performs its function in a single job step . RASP/OP
is a two step operation and both components employ g€ erative
processing techniques. As a result QUIP often requi ~s
less run time to accomplish a given task , especially w. ~n
a relatively small number of records is queried. When
possible , both methods should be tried to determine which
is more efficient under the given conditions.

Both RASP arid OP may be made more efficient through
the utilization of stored process elements and LIMIT/OMIT
logic. Stored process elements are those queries and RITs
that have been previous ly compiled and stored on an execution
library . They may be called in and executed immediately ,
thus avoiding the otherwise routine and time-consuming step
of compilation every time they are required . Use of LIMIT/OMIT
logic permits the associated component to bypass those f i le
records that cannot meet requirements . If used wisely ,
this capability can reduce the number of records processed.

27 CR-i

— I

Organization of data to make effect ive use of the SELECT
operator in RASP , can lead to significant savings in I/O
time , QDF data set space requirements , and subsequent processing
time.

3.2 .3 Secondary Indexing

Secondary indexing is a special processing capability
developed to increase processing efficiency for certain
types of files , and should be considered during fi le design .

Secondary indexing is a process of specifying additional
retrieval control fields for a f i le to enh ance information
retrieval. In this case , however , uniqueness of the index
value is not a requirement , as many records probably have
the same index value . Thus , for information retrieval,
a f i le ’s primary index is the record control group while
other data fields may be specified as secondary , or alternate,
indexes.

As a means of comparison , consider the RASP LIMIT state-
ment. Through its use , examination of records may be limi ted
by the contents of the high-order positions of the record
cor.trol field . If secondary indexing is utilized , examination
of records for retrieval may also be minimi zed , but based
on the content of the secondary index, which may be ~~~fixed field value in a fixed or periodic set , or any word in
any field in a fixed , periodic , or variable set (keyword index) .

The benefit resulting from the correct use of secondary
indexes is that of dramatically reduced retrieval - run
time . For an ISAM data f i le with secondary indexing specified ,
only those data records qualified by the secondary index
are accessed ; these selected records are then subjected
to the complete logic of the query . The majority of the
f i le ’s records may be ignored .

For a SAM data file, secondary indexing is not quite
as significant, since the fi le mus t be passed seq entially
simply to access the records qualified by the index. In
this environment , however , retrieval terminates when the
last qual ifying record has been processed . Also , for large
multi-volume SAM files , secondary indexing will speci fy
which volumes are to be searched.

28 C R 1

-_ _

Consider the example shown in Figure 7. The user has
specified that the field LOC is an index field. The Index
Data Set , TEST36 OX , contains all record IDs for each unique
value (CANNES , PARIS) of each index field (LOC). When the
user executes the query :

IF LOC EQ PARIS

the Index Processing phase of RASP or QUIP evaluates the query
and determines (from the index descriptor record in the FFT)
that LOC is an index field. The Index Processing phase determines
from the Index Data Set the record IDs (J000 112 , J00 123 , W04237 ,
W05689 and W062 l0) of each record in the fi le which has a LOC
value of PARIS . These records now become candidates for evaluation
by the retrieval component . In this example , all candidates ,
in fact , satisfy the query . If , however , the query had been
specified :

IF LOC EQ PARI S AND MEQPT EQ HU-l5.

not all candidates would satisfy the query . Since MEQPT
is not an index field , the retrieval component must evaluate
each of the candidate records (LOC EQ PARIS) , and qual i fy
only those records which also have a MEQPT value of MU- i S .

Secondary indexing is not without its expenses . Secondary
indexes must be defined , either during fi le structuring for
new f i les or by the index specification util i ty (UTNDXSPC)
for existing fi les. Space for these indexes mus t also be
reserved in the form of the Index Data Set. Index Data
Set space requirements may be computed using the following
algorithm :

1. For each indexed field , compute the number of
blocks (BR) required to store the uni~que values
from that field :

(VL+7) *NU V = BR
BLOCKS I ZE

29 CR-i

—-- -

~

.-
- -

— — — — - -~~~- ----

User selects Index Fields

Index LOC.

Index Data Set contains :

Record ID’s for each value of each Index Field

Evaluate only Candidate Records

Query : IF LOC EQ PARIS.

EST36O LOC

CANNES
I J00014

I J00241
JO 0256
J00 324

TEST36OX

L~~
J

PARIS
J00042
J00123
WO 4237
W05689
W0620 l

Figure 7. Index Data Set

30 C H 1

_ _ _ ~~~ - . -—-- - —- ~~~~~~~~~~~~~~

* 2. For each indexed field , compute the number of blocks
(MR) required to store mas ter indexes :

(VL+7)*BR =

BLOCKS I ZE

* 3. For each unique value in each field , compute the
number of blocks (CR) required to store the major
identifiers of the records in which the value
appears . -

NR*(RL+2) = CR
BLOCKS I ZE

* 4. Compute the total block requirement by summing
the counts for items l ,~~2 , and 3.

BR+ M R + CR = NBR

DEFINITIONS:

* NUV - Number of Unique Values or Keywords

* VL - Value Length or Average Keyword Leng th

RI - Major Record ID Length

* NR - Number of Records (or Subset Records if the
Index is a Periodic Field/Group) in which a
unique value or keyword appears .

CR - Candidate Requirement

BR - Base Requirement

MR - Master Requirement

NBR - Number of Block s Required (if Gen Mode ,
Allocate 1.15 X NBR)

Effect ive use of this algorithm, however , requires that the
user have an exceptional knowledge of the data values in his

30.1 CR— i

__

f i le . If the user is not able to accurately estimate his
data set space requirements , he can use the following procedure :

a. Allocate a large amount of space on a disk pack .

b. Generate the Index Data Set using File Maintenance
or the UTNDXSPC u t i l i ty program . At the end of
this run the message:

3599 OF THE XXXXX RE LATIVE BLOCKS ALLOCATED
TO THE INDEX DATA SET, YYYYY ARE USED.

will be printed. This message will tell the user the
exact number of blocks required for the Index Data Set.

c. Use the XTRDISK procedure for the UTNDXTFR utility
program to transfer the Index Data Set to tape.

d. Scratch the Index Data Set from the disk pack .

* e. Use the XTRTAPE procedure for the UTNDXTFR utility
program to transfer the Index Data Set to disk.
Allocate more blocks for the Index Data Set than
the current requirement (indicated by the message
from file maintenance (FM) or UTNDXSPC) to allow
for Index Data set expansion . The Keyword Analysis
Utility (UTNDXKAN ; XKA procedure) can be used to obtain
keyword data for use with this algorithm.

The Index Data Set will automatically be updated (index
maintenance) by FM each time the data f i le is updated , pro-
vided the XINDEX symbolic parameter references the Index
Data Set. The relative cost of index maintenance depends on
the frequency and volume of index field updates . Addition of
new records containing index fields will always require
updating of the Index Data Set. Change transactions a f fec t
the Index Data Set only if the index fields are affected .

The Index Data Set is maintained as a B DAM file. As this
data set is updated , its organization gradually becomes less
efficient. It is necessary to periodically reorganize the
Index Data Set by using the UTNDX~ FR u t i l i ty program to trans-
fer from disk to tape and then back to disk . Each time the
Index Data Set is updated the number of blocks utilized is
printed . The gradual increase over the original requirement
gives an indication of the need for reorganization.

31 CR-i

- _ _ _ _ _ _ _ _ _ _

Since the Index Data Set must be disk resident, the require-
ment for backup must be considered . A procedure similar to
the procedure recommended for ISAM file backup (subsection
3.2.1.5) could be implemented. By reorganizing (XTRDISK ,
XTRTAPE) the Index Data Set after each update , the user not
only ensures optimum organization of the Index Data Set, but
also provides a backup Index Data Set. If the Index Data
Set is destroyed or (through user or operator error) gets out
of synchronization with the data file, the user must generate
his Index Data Set in order to continue using the secondary
indexing capabilities . To regenerate the Index Data Set, the
user must take the following steps :

a. Erase the existing Index Data Set from disk .

b. Execute the UTNDXSPC utility program. Use the GEN
option. The index specification utility program
uses the index descriptor records already present
in the data file FFT to generate a new Index Data Set.

Example:

// EXEC PGM=IEHPROG~1
//DD1 UNIT=(2314) ,DISP SHR ,VOL SER=123456

SCRATCH DSNANE=TEST3GOX ,VOL=23 14=123456
// EXEC XSP ,XINDEX=TEST36O ,XDISP=NEW ,
// XVOL= ’SER=123456 ’ ,ISAM=TEST36O ,
// VISAM= ’SER=l23456 ’,PARM=GEN

In order to ensure the integrity of the indexing capability ,
it is mandatory that the Index Data Set correspond exactly
with its associated data file . Each time an indexed data
file is updated (by FM or SODA) , a date of update is entered
into the File Format Table (FFT) and the same date added
to the Index Data Set. Whenever RASP or QUIP accesses
the data fi le , the file date is compared to the Index
Data Set date . These two dates must match in order for
index processing to be invoked. If the dates do not match ,
the following message will be printed :

~~350O~~ INDEX USAGE NOT FEASIBLE .
SEARCHING THE ENTIRE FILE.

In this case , the retrieval will still be properly executed,
but indexing will not be used.

32 CU—i

- -~~~

When FM or SODA accesses the data file for update,
the data file and Index Data Sets are also compared. If
they do not match , the following message will be printed :

34l8 INDEX DATA SET NAME DOES NOT MATCH DATA
FILE

The data file will be satisfactorily updated , but the Index
Data Set will not be modified . Therefore , since the Index
Data Set is no longer compatible with the data file, index
processing will not be invoked in subsequent retrieval
runs. To use index processing again , it is necessary to
scratch and regenerate the Index Data Set.

If the user (intentionally or inadvertently) updates
his data set, but does not include the indexing parameter
(e.g., XINDEX=TEST36O) on his FM EXEC card , the data file
will be updated , but the Index Data Set will no longer
be valid . Omission of the indexing parameter from a RASP
or QUIP run against an indexed file , causes the retrieval
component to determine that indexing is not feasible, but
the retrieval will be satisfactorily executed.

* When using Keyword Indexing , no safeguards are provided
when a user changes keyword tables, because the tables are
independent of specific data files . One stop word table may
be specified for a number of fields in several data files.
When a keyword table is changed , the Index Data Sets for all
fields associated with the table no longer correspond with
their associated data files. The affected indexes must be
recreated by deletion and addition or the affected Index Data
Sets must be scratched and regenerated . During the period
when the table has been changed , but the Index Data Sets
have not been brought up to date, erroneous results will be
obtained from all NIPS functions.

* One method for controlling data file access during table
maintenance is to rename the table just be fore it is updated.
After the table is updated , delete all affected indexes and
add them with the new table name. In the interval , all
attempts to access the indexed fields will result in “table
missing” errors. If this method is used , remember that each
page of the table must be renamed.

33 CR-i

- —.---. -- - - - _ _ _

-~~~~~

Advantages of using secondary indexing also depends
on several factors .

a. Percent of f i le retrieved

b. Number of unique values

c. Frequency of retrievals

d. Number of index clauses

e. Frequency of index value change

* f. Necessity for querying full text data in variable
fields and sets.

Indexing is relatively ineffective if a large percentage
of the file is retrieved. If a large portion of the file
is to be retrieved it is more effective to bypass index
processing (PARM= ’INDEX=NO’) and sequentially access the
records , rather than access them as candidate records one
record at a time . The INDEX =NO option also bypasses the
index processing overhead cost.

The more unique values a field has, the greater its
potential effectiveness as an index field for retrieval ,
though the maintenance Costs can be expected to increase .
For an indexed field the length of the list of records
containing each unique value, relative to the number of
records in the f i le , af fects the eff ic iency of us ing that
field . If the list for each value is of equal length ,
the ideal number of unique values is equal to the square
root of the number of records in the f i le .

For example , assume that LOC and CN TRY are fixed f ields
in a 1000—record TEST36O f i le , where there are 100 unique
values of LOC and 20 unique values of CNTRY . Conditioning
on LOC as an index field would qualif y an average of 10
candidate records , while conditioning on CNTRY as an index
field would qualify an average of 50 candidate records.

If indexed retrievals are infrequently utilized , the
costs of index maintenance may be more than the savings
accrued by retrieval.

Generally, it is desirable to define index fields
and design queries to produce an explicit candidate list
which causes retrieval evaluation of a relatively small
number of records . Defining index fields to be used in
multiple clauses connected by an AND can define a candidate

34 CU—i

— -~~~~~~ — ——

list where every record satisfies the query . Excessive
index processing overhead can be generated , however , if
there is a broad overlapping of candidate records qualified
by each index clause. For example :

IF LOC EQ PARIS AND CNTRY EQ FRANCE .

Assuming there are 10 records in PARIS and 50 records
in FRANCE , index processing would generate a list of record
IDs satisfying the LOC EQ PARIS clause and a second list
of the record IDs satisfying the CNTRY EQ FRANCE clause.
These two lists would then be merged to form the single
candidate list of 10 records satisfying both clauses . This
candidate list would then be evaluated by the retrieval
component. It is clear that there is redundancy in index
processing for the evaluation of these two clauses, since
every PARIS record is in FRANCE. Even if there is a possibility
of one or more units in PARIS in some other country, exclusion
of a CNTRY as an index field would reduce the index processing
overhead cos t and probably improve overall query response.
In the above query, if CNTRY were not an index field , the
candidate lis t would contain all units in PARIS (but not
necessarily FRANCE). The retrieval component would then
qualify only those records in PARIS FRANCE. If both fields
are indexed, the overhead associated with CNTRY can be
avoided by use of the FURTHER statement. Example:

IF LOC EQ PARIS.

FURTHER CNTRY EQ FRANCE.

FURTHER statement clauses are not processed by Secondary
Indexing.

Effective use of the secondary indexing capability
requires a thorough knowledge of data values and file utilization.
Ideally, index fields would have low update activity, but
frequent retrieval utilization.

To aid in selecting index fields , the user should
uti l ize the f i le utilization statistics capability (see
subsection 3.5) . File uti l ization statistics inform the
user of the mos t frequently referenced fields in each of
FM , RASP , QUIP and OP. Using these statistics, the user
can select for indexing those fields most frequently used
by RASP and least frequently updated wh ile avoiding data
fields rarely used for retrieval but frequently updated .

35 ~H—l

* The user should also employ the Keyword Analysis Ut i l i ty
(UTNDX KAN) to determine if keyword indexing would be practical.
One of its functions is to list all words in a field with
frequency counts or major record identifiers .

3 .2 .4 Keyword Indexing

Keyword Indexing is a text-retrieval capability that
provides a method by which the NIPS user can access and retrieve
records based upon the contents of variable-length or text

- data fields. The Keyword Indexing capability is described
in section 3.7 of the NIPS User Documentation , Volume I -

Introduction to File Concepts .

Efficient use of Keyword Indexing requires an evaluation
of the user application and the intelligent selection among
a number of user options . The criteria for evaluating these
options is discussed in the following paragraphs .

3 .2 . 4 . 1 Scan Subroutine

A scan routine defines word boundaries (i . e . , determines
the limits of words by identi fy ing literals and text words)
in keyword indexed fields during execution of FM, SODA, and
Index Specification . The user can use the system provided
scan routine, or can develop a special purpose scan subroutine
for his application.

The Sys tem Scan subroutine defines the following word
types:

a. Literal word - delimited by a single quotation
mark character

b. Alphanumeric - letters and numbers

c. Decimal notation - numbers with embedded commas
and a single period

d. Symbols and abbreviations - alphanumeric words
with imbedded periods and hyphens (optional).

35.1 CH—l

—~~~~~~~~~~~~~~~~ - - - - -- - - -~~~ _ _ _ _ _ _ _ _ _

- -~~~

In addition , it recognizes a hyphen optionally as a
textual character, as part of a symbolic word , or as a
connector between two parts of a word that was split in the
process of creating data file update transaction records.

If the System Scan Subroutine does not meet a user ’s
needs, he can write one of his own . His subroutine must
conform to the following interface conventions .

A scan subroutine is called conventionally by the Scan
-

Processor (IXFIIKSC) :

register 15 - scan entry address
register 14 - return address
register 13 — save area address
register 1 - parameter list address.

The parameter list is shown in figure 7.1. The first time
the subroutine is called , bits in the return code byte indicate
end-of-field (new field to be processed). The scan subroutine
controls the return code. It must clear the code when it
begins to process a field and must set the end-of-field code
when the field has been processed . The Scan Processor tests
the code to determine when a new field should be addressed ;
only then will it update the parameter list. The scan sub-
routine must , before it returns , either move a one-byte word
length and a maximum 30-byte word to the area addressed by a
parameter , or it must set the no-word and end-of-field return
code. When a literal word is returned it must flag the word
length byte.

The keyword index hyphen option is available as a scan
flag. The parameter binary equivalents to the index option
are:

1 - DROP
2 - RETAIN
3 - SEPARATE
4 - TEXT (default)

The option words can obtain any meaning desired by the user.

It is suggested that the user employ the Keyword Analysis
Utility (UTNDXKAN) to debug this scan subroutine . He must
store the routine in a user library . Then he can specify
its name in a control statement and limit the number of NIPS
records processed during the test.

35.2 CU—i

- —4

F - addres s of field HOP
F — scan limit address (field LOP)
F - address of word holder area

area format:
CL1 - word length . Bit 0 is 1 if literal.
CL3O - word, left justified , no padding.

CL1 - hyphen option; binary .
1 - DROP
2 - RETAIN
3 — SEPARATE
4 - TEXT (default)

CL1 - return code
bits 0-3: not used by scan
bit 4: no-word-found if 1
bit 5: end-of-field if 1
bits 6-7: not used by scan

Figure 7.1. Scan Subroutine Parameter List

35.3 CU—l

#3.2.4.2 Stopworct ~~~~~~~~~~~~~~~~~~

A stopword table causes the elimination of words which
match the table during index maintenance. Its function is
to reduce the volume of data to be processed .

The decision for creating stopword tables should be based
entirely upon volume. All occurrences of all words from
keyword indexed fields are processed twice. First, they are
blocked in index transaction records for passage to the OS
sort. The space required is roughly equivalent to that
required to store them in the data file . Then they are
sorted (except SODA) . Each word is stored in a fixed length
field (31 bytes) in a sort record. A stopword table should
probably be created when the volume exceeds 50 ,000 words ,
although this figure will vary with hardware capacity .

The system stopword table is intended for use with full
text data that consists of grammatically correct sentences.
It will probably have little value with data composed only of
keywords or phrases , but such fields normally will not require
a stopword table .

Note that the suffixed word function is not associated
with stop words. To eliminate the suffixed forms of a word ,
each suffixed form must be defined as a stop word .

#3.2.4.3 Dictionary Tables

A dictionary table causes the substitution of the root
form of a word for all occurrences of suffixed forms of that
word and the substitution of one word for all words in a
group defined to be synonymous .

The decision for creating a dictionary should be based
on data content. If no dictionary is specified for a field ,
each unique word which does not match a stopword table is
stored in the Index Data Set with the major identifiers from
the NIPS records in which it appears. Under this condition ,
suf fixed forms of a word are not recognized as such ; each
suffixed form is stored as a unique value. A dictionary is
required if all forms of a word are to be stored as one value
in the Index 1~ ta Set. The same reasoning applies to words
which are synonymous or which the user wishes to treat as
equivalent.

The same logic also applies to retrieval. Even if data
file information does not include suffixed words or synonyms ,

35.4 CE—i

- -~~~~~- - - - -~~~--~~~~~ —-- -

the presence of a dictionary permits a user to include suff ixed
forms or synonyms in retrieval statements .

A dictionary can be employed to perform the function
of a stopword table - the elimination of words which will
never be used as retrieval terms . Words which match a stopword
table are excluded ; words which do not match a dictionary are
excluded . However , the use of a dictionary solely for word
exclusion is ineff ic ient since no processing time or space is
saved . Words are matched with the stopword table immediately
after they are recovered by the Scan subroutine. Words are
matched with the dictionary during the creation or update of
the Index Data Set. In addition , each retrieval statement
keyword term is matched with the dictionary .

*3.2.4.4 Data File Creation and Update

Data content , often tolerable in any form when used only
for display , becomes critical when the same data is queried.
Normal data validation procedures should be followed. In
addition , the following considerations are pertinent to key-
word indexing .

If raw data is coded before it is converted to machine
readable form, keyword indexing permits the codes to take the
form of several words or phrases stored in a fixed or variable
length field . Although requiring more space than symbolic
codes , this form simplifies error checking and eliminates the
need for display conversion . A glossary of coding terms
applied here would ensure consistency and probably eliminate
the necessity for keyword tab les; in e f fec t , the coder matches
the keyword dictionary be fore the data enters the system.

When FM update transactions are created , a procedure
should be followed which prevents word split t ing. If a word
is split between transaction records , the System Scan sub-
routine will treat each part as a separate word . If a word
is split within a transaction record , the hyphen DROP option
may be used to recover it. For example, if transaction

• records are created from MTST tapes and several lines are
combined into one record , a word may be split between lines
and the parts may be separated by blank characters . If the
first part of the split word is immediately followed by a
hyphen (common continuation) and the DROP option is specified ,
the Scan subroutine will ignore the hyphen and any following
blanks and recover the two parts as one word. The choice of
this option prevents the use of the hyphen in symbolic notation ,
however.

35.5 CH—l

- - ----~~~~~~~~~~~~~
--

Care should also be exercised in the use of the quotation
mark character (quote) . A single quote is a literal delimiter ;
two single quotes separated by any other character are required
to define the literal word limi ts . (Two consecutive quote
characters are ignored.) If only one quote is present in a
field , the System Scan subroutine assumes that a literal word
has been split. However , unlike its treatment of split non—
li teral words , it disregards all characters from the single
quote to the end of the field. If a literal word is split
between two records , the part of the literal in the f i rs t
record will be ignored . The second part of the literal will
be processed as a non-literal, and all data from the delimiting
quote in the second record to the end of the field (which
probab ly includes non-literal words) will be disregarded . In
other words , an even number of quotes mus t be present or
erroneous scanning will result .

Spell ing errors can usually be corrected more easily in
transaction records than in data files. Therefore it is
recommended that all transactions be displayed and proofread
before data file update.

It is also recommended that the MVR operator (POOL) rather
than MVF be used in logic statements that create and update
variable sets . MVF reblocks transaction data in to field
length subset records wi th a high percentage of word splitting;
each subset is scanned as an independent field . MVR creates
a subset record for each transaction record ; transaction data
is not reblocked. MVR may also be used to update variable
fields; processing is identical to that of MVF . The NFL MOVE
(variable field) and ATTACH (variable set) both expand into MVR
operators .

#3.2.4.5 Data File Analysis

The objectives of analysis are to determine if keyword
indexing of selected fields is feasible, to identify misspelled
and split words in prospective fields , and to establish the
contents of keyword tables if any are required . They are
accomplished by examining word li sts produced by the Keyword
Analysis utility (LJTNDxKAN) . The following steps are
recommended :

—- Feasibility : li st all words in selected fields
-- Error correction
-- Create stopword tables
— - Create dictionaries

35.6 CH—l

- -- — - -- -- ----- - — --- ~~~- -~~~~~ -

o Feasibility

For each selected field , prepare a tJTNDXKAN statement;
specify the field name and bypass for both tables . If the
estimated volume of words from all fields will exceed 150,000,
an initial run with a file statement that limits processing to
100 NIPS records may be advisable . Use the OS sort dele te and
maximum counts to estimate total volume and adjus t the UTNDXKAN
sort spac2 parameter accordingly . Remove the file statement
before making the analysis run.

The judgment as to whether or not it is feasible to index
a field is completely subjective. It is a matter of weighing
retrieval requirements against data content. This initial
listing shows a NIPS record frequency count with each word
which will probably be most helpful in analyzing data consisting
of full sentences such as abstracts.

o Error Correction

It should be relatively easy to spot broken and misspelled
words. If there are relatively few such words they can be
ignored , i.e., eliminated by stopword table entries , or
corrected by dictionary synonym entries. If the data is in
rather bad shape, it will probably pay to correct the data file
before continuing with the analysis procedure . As an aid in
the correction process, add the record identifier option to
the field statements of fields with poor data and execute
UTNDXKAN to get a list of words with NIPS major record
identifiers and occurrence counts. It is possible that a
relatively few NIPS records contain all the errors.

o Create Stopword Tables

A stopword table will probably not be needed for fields
that contain only coded words or phrases unless it is used to
eliminate erroneous words . It would be better to correct
words with a dictionary than to eliminate them. However, if
split words are corrected , one part of the split mus t be

• retained for correction while the other part must be deleted.

For full-sentence data, word frequency counts can be
used as a guide to the selection of stop words ; words which
appear in more than 4O percent of the data file records are
probably not worth retaining .

35,7 CR—i

- — — ~~1~~~~
— — - - - -_ _

— -

If several or all fields contain similar data it would be
advisable to create one stopword table for all of them to
reduce overhead. In that case, it might be helpful to execute
UTNDXK AN to obtain one list of words from all fields by using
a file statement that specifies the merge option .

Pun ch the stop words into cards . If a user library does
not exist , create one ; the Dictionary Maintenance utility (XKM)
procedure does not include parameters for library creation .

Prepare a UTNDXKMD table statement and a display statement
for each stopword table to be created . All words mus t f i t one

- table page . About 115 words can be stored on a 1K page; specify
page size according to word volume .

Af ter UTNDXKMD is executed to create the stop tables,
revise the UTNDXKM D field statements; replace the stop bypas s
parameters with the proper table names , then execute JTNDXKMD
to get a word list with stop words flagged . Use this list to
validate stopword table content.

o Create Dictionaries

If stopword tables were created, add a parameter to each
UTNDXKMD field statement to bypass stopword display and execute
UTNDXKMD to get a list of rion—stopwords only . Examine the list
to determine if a dictionary is required . A dictionary is
probab ly required if error correction is necessary , if suff ixed
words appear in the data file, or if synonyms are desired.

One approach to compiling a dictionary is as follows .
First , examine the list produced by UTNDX KAN for suffixed words .
Cros s off the suff ixed words and write the root form of the word
next to them on the listing if it does not appear in the data
f i le . If the word ending changes when it is suffixed , include
suf f ix notation with the root form of the word . Next , make a
list of all synonyms and check them off the UTNDXKAN listing.
Do not include suffix notation in this list. Do include error
correction synonyms. Note that a word included in the diction-
ary need not appear in the data fi le . All occurrences of a
word may be incorrectly spelled , or a preferred retrieval term
may not appear at all. The correct or preferred word can and
should be included in the dictionary. Next , make a list of
suf fixes -- all root words on the UTNDXKAN listing with suffix
notation . The same word may appear on both the list of suffixes
and the list of synonyms . Check off all words with suffix
notation on the UTNDXKA.N listing. All words on the UTNDXKAN
listing which were not checked off constitute a list of keywords
(neither suffixed nor synonyms).

35.8 CE—i

Generally, it will not pay to combine terms from several
fields into one dictionary . The saving in overhead during
retrieval and maintenance is insignif icant. On the contrary ,
large dictionaries mean many pages , degrading rather than
enhancing retrieval time .

After dictionary terms have been selected , prepare four
UTNDXKMD table statements for each dictionary to be created
-- to add keywords, suffixes , and synonyms , and to display
the created table . After executing UTNDXKMD , replace the
dictionary bypass parameters in all UTNDXKAN f ield statements
with the names of the proper dictionaries and execute UTNDXKAN .
Check the resulting list for proper word identification and
substitution .

#3.2.4.6 Indexing the Data File

When executing the Index Specification u ti l i ty, only
keyword table page sizes and word volume require special
consideration. If the sum of table page sizes exceeds 10K , the
execute region should be increased by the excess for more
eff ic ient processing. If any page exceeds 10K , the region must
be increased.

Computing the number of blocks to be allocated to the index
data set is tedious at best. As an alternative to the algorithm
presented in section 3.2.3, an approximate count can be obtained
by counting the number of keywords and basewords on the f inal
analysis UTNDXKAN l ist ing. By observation , obtain a rough
approximate average frequency count for all keywords , base—
words , and convert words . Compute the block allocation from
the following algorithm . Ignore the remainder in all divisions.

(1) Compute words per block.

WPB = BLOCK SIZE
15

(2) Compute keys per block.

KPB = BLOCK SIZE
KEY LENGTH

35.9 CH—l

-- - - —..- —- - - --———— - —-- - - —_~— ----

(3) Compute blocks required for words .

BVL = NKB + 1
WPB

(4) Compute blocks required for a master index; if BVL
is less than WPB , MIL=O.

MIL = BVL + 1
WPB

(5) Compute blocks required for-keys.

CDL = (AVE/KPB + 1) * ~qy~

(6) Compute minimum blocks required.

TOTAL = 2 + BVL + MIL + CDL

35.10

CH- 1

- • ---~~~~~~~~~~~ --—- -~~~~~~~~~~ ---- ——-—_____________

#3.2 .4.7 Maintenance Considerations

When a data fi le is updated , its associated Index Data
Set is automatically updated also. Keyword indexing affects
this function only insofar as volume is concerned. Each key-
word field contains multiple values (words); it will obviously
take more time to update a keyword field than it will to update
a secondary index field. In addition, Index Data Set reorganiza-
tion will probably be required more frequently.

When a keyword table is updated , Index Data Sets associated
with it are not automatically updated. Only the user knows
which data files are associated with the table so it becomes
his responsibility to maintain Index Data Sets when he changes
a keyword table. The tool for accomplishing this function is
the Index Specification utility and the method is to delete
and add the index for all fields indexed with the updated
table. The utility treats the deletion and addition of an
index with identical parameters in the same run as a NO-OPERATION
so indexes must be deleted in one run and added in a second run.
An alternative is to rename the table when it is updated. Then
the new table name is a new parameter when the index is added;
deletion and addition can be accomplished in the same run. This
method has the advantage of short circuiting indexes for the
revised table which the user neglects to update; the old table
name in these indexes will not be found. If the latter method
is used , remember to rename all pages of the table. Table names
are padded with EBCDIC zeroes to seven bytes and the eighth
byte is used to number the pages. Page sequence is a blank,
A through Z, then EBCDIC zero through nine . Each page is
stored as a member in the user~ s library .

Note that only changes that affect an Index Data Set require
user action . If words which do not appear in any form in a
data file are deleted or added to a table, no action is
necessary . Therefore, tables should be created or updated
before data files are created or updated .

3.2.5 File Segmentation .

File segmentation permits a large SAN f i le to be sub-
divided into smaller subfiles , or segments . Each segment is

35.11 CR—i

- — —-- ~~~~.-
I —

treated much as an independent file, but all segments may be
collectively processed as one main file, except in FM processing.

A segmented file must be subdivided by the contents of
the high-order positions of the record control group. Each
segment is defined by a range of values in the segment control
field. File maintenance may be performed on only a single
segment at a time , but retrieval and output operations may be
performed on a single segment or on all segments through the

- use of the JCL data set concatenation capabilities .

File segmentation is a capability ideally suited to the
maintenance of chronological files or other data files where
data records are continually appended to the end of the data
set. Segmentation minimizes the size of the data set to be
processed in accessing any specific range of records .

3.3 File Field Specification

The user must consider a number of factors when defining
file fields at file structuring time.

3.3.1 Control Field Considerations

The specification of f i le control fields is a task that
is always performed but is frequently accomplished without
proper analysis. Control fields to be specified are the
record control group and subset control fields , if an!, for
each defined periodic set.

Other than limitations on length, the record control
group must satisfy only one other requirement: to uniquely
define each record in the file. When possible however, the
record control group should be designed to aid in efficient
operation of the file . The following steps should be
considered in selecting the record control group:

a. Minimize the length of the control group.
It must be included in every transaction
and index (both ISAM indexes and secondary
indexes). Extra characters can be costly .

36 CE-i

-

-

--

~~~~~~~~~~



field being printed . Only four one-byte fields
can be LISTed on a single line of the 2260 scope
if the user has defined 15-byte column labels.
If no label is defined in the FFT , the field names
should be as descriptive as possible, since they
will be used as column labels by the QUIP LIST
statement.

e. Direct Subset updating can be a very efficient
method of updating a NIPS file. If direct subset
updating is to be used in FM , however , a unique
subset control field must be defined in the FFT.

3.4 Size Considerations

In designing and organizing a data file, the f i le
designer should consider the importance of size in all
aspects of the file. There are four major areas where
size is important: total size of the file, data record
size, set size, and size of the individual fields and groups.

3.4.1 File Size

File size becomes a problem whenever the f i le, because
of its size, does not satisfy the response requirements
imposed on it. Usually the failure is due to the number
of file data records. This leads to extended run time
for updating the file and producing the-standard products.

Additional file size problems can arise as a result
of the record size. Approaches to this problem are discussed
in subsection 3.4.2. Also , extended run times can result
from complex or inefficient employment of NIPS components
(refer to Section 4, Language Characteristics) or, if the
file is ISAM , from cylinder overflow from the prime area.

To reduce the number of records in a file, the first
step is the elimination of all totally unnecessary records.
Proper data record purge procedures should be defined and
implemented as an integral part of the file. A logical
purge may be used where records are automatically eliminated
as a result of some data field value; e.g., a date, specific
manual designation by a user , or some other external source,
but procedures must be established .

39 CH—l

- — - - p

-

- T~~~~T~



Data records may be eliminated from a mas ter file
and retained on a second file as a history capability.
The historical file may duplicate the format of the main
file or it may utilize a different  File Format Table .

Use of the purge and historical capabilities concurrently
is also reasonable. Records would likely be purged from
the main file as they are added to the history file . A
possible history file procedure is shown in Figure 8. Two
RASP queries are run against the master file defining purge
and history speci fications, respectively. The NIPS utility
program UTQRTQDF is run against each RASP answer set to
produce a purge file and a history file.

Initial file design can also forestall file size problems
by concise definition of several smaller files rather than
one large file. Utilization of NIPS capabilities such
as IFO and merged file output could be used to bring data
from the various files back together.

The file segmentation capability can be utilized to
present smaller files to the file maintenance and retrieval/
output functions. Although sementation does not alter the
size of a file , it permits the file to be processed as a
series of subfiles, called segments. Refer to subsection
3.2.4.

* File compression and compaction can also be used to
reduce the physical size of the fi le.  Compression and com-
paction provide a means of reducing intermediate storage
requirements for data without altering the integrity of the
data. This data reduction scheme is particularly suited to
data files that contain strings of identical characters or a
large amount of alphabetic data. The record control bytes of
a record are not compressed or compacted.

# A string of four or more identical characters is com-
pressed by translating it to two bytes. The first byte is a
control byte which indicates that compression has been
applied and gives a count of the number of identical con-
secutive bytes that were in the original string. The second
byte is identical to those in the original string.

A string of alphabetic characters is compacted by trans-
lating it to a control byte followed by a string of coded
characters. The control byte indicates that compaction has
been applied and gives a count of the coded characters. Each

40 CE-i 

- - -~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~*--- - -- ----



_  - 

[

RASP

SET J 1 SET Ii (PURGE) I I I
(H IS TORY)

OLDi u rQRTQDF OP
HISTORY

FILE

~~~~~~~~~~~C F M

UPDATED

HISTORY

FIGLIRE 8. HISTORY FILE PROCEDURE CH—l

41

- -

coded character represents a combination of two adjacent
alphabetic characters .

Compression or compaction can be applied to a data file
by specifying COMP RESS or COMPACT respectively as a value for
the PARM parameter on the EXEC statement for the SAM to ISAM
and ISAN to SAN utilities. The combination of both compression
and compaction can be applied to a data file by specifying
both keywords as values for the PARM parameter. When both
are specified, compression is applied to a record first and
those characters that cannot be compressed are processed for
compaction .

The compression and/or compaction process can be
reversed by specifying EXPAND as a value for PARM parameter
for either utility .

The potential effectiveness of compression/compaction can
be determined by executing the program NIPSDU MP wi th the PARM=
CC option. This program provides statistics on file size,
number and total size of each NIPS record type, and file size
after compression compaction. No changes are made to the data
storage mode when using PARM=CC option of the NIPSDUMP program.
The following example shows the coding required to execute
NIPSDUMP.

1/ EXEC PGM=NIPSDUMP,PARM=CC
// STEPLIB DD DSN=FFS.JOBLIB,DISP=SHR
// FILE DD DSN=TESTER ,UNIT=23l4,DISP=SHR
// SYSPRINT DD SYSOLJT A
//SYSIN DD *

The following example shows the type of output produced by
NIPSDUNP when the PARM=CC option is used.

000348019 R—RECORDS IN FILE SIZE=0028l14l560 BYTES
000348019 RECORD S COMPRESSED SIZE 0017834166 BYTES
000347976 RECORDS COMPACTED SIZE=0022259687 BYTES
000348019 RECORDS BOTH SIZE=0015835009 BYTES

FOR COMPRESSION
FILE SIZE REDUCED 36,.52 PERCENT
R— RECORD (DATA PART ONLY) REDUCTION 44.96 PERCENT

FOR COMPACTION
FILE SIZE REDUCED 20.84 PERCENT
R-RECORD (DATA PART ONLY) REDUCTION=25.66 PERCENT

41.2 CH—l

~

-
_ _ _L +~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

r

-j

FOR BOTH
FILE SIZE REDUCED 43.60 PERCENT
R-RECORD (DATA PART ONLY) REDUCTION 53.69 PERCENT

When processing compressed files, the record must be
expanded when being read and compressed when being written.
Very little processing is required to expand a record; file
compresssion is a much more sophisticated routine. Therefore,
reading a compressed file causes a very small increase in CPU
time, writing a compressed record causes a larger increase in
CPU utilization .

Since FM must both read and write updated records, the
increase in CPU utilization will be greater for FM than for
RASP , OP (source direct), and QUIP (source direct). During
a SAN file update, every record must be read and rewritten.
For an ISAN update, only the updated records will be
processed. Therefore, file compression will have a relatively
small impact on CPU utilization for ISAM file updates.

The number of factors affecting total processing
efficiency of compressed files , requires that each application
be reviewed independently to determine compression effectiveness
for that application.

3.4.2 Record Size

Theoretically , a NIPS data record, because of its
organization as a series of logical records,may be of any size.
Certain NIPS components , however, must limi t the size of the
data record that can be retained for processing at one time.
This limit, called the “process block size,” is variable,
depending on the component and the option of the user (see
Introduction to File Concepts, “Data Record Organization
Summary”, CSM UM 15-74). Process block size limitation3 are
discussed in appendix C of this document.

Because of the process block limita tions and because
large records greatly increase file storage requirements,
record size often becomes a problem.

Data record size may be reduced by. data condensation
tech iques such as subroutine or table conversion. However,
the ;er must weigh the advantages and costs of data conversion.
Some of the factors to be considered are:

41.3 CH—l

- -—~~~~~~~ —.- - --- --- -. - - - - -~~~~—- . -- ——- -.~~- - - ~~~~~——-

a. Effort required to develop, maintain, and use
conversion tables or subroutines . Whether or not
conversion techniques are standardized and
meaningful to all users.

b. Full Size--Small files probably do not merit the
effort required to implement conversion techniques.

c. Reduction attained-—A reduction from 20 bytes to
two bytes is more significant than from three
bytes to one byte.

d. Frequency of occurrence——Converting a record control
group field is more effective than converting a
fixed set field, because the record control group
is included in each logical record.

e. Conversion time——If the transaction data exists in
coded form, moving it into the file in that form
eliminates FM conversion. If the transaction is
not coded, FM conversion would be required to store
the data in coded form.

f. Accuracy for retrievals--Spelling and keypunch
errors may be reduced if a code can be specified
in lieu of a 20- or 30-character name, which may
be input in various formats.

3 .4 .3 Set Size

The set is the highest NIPS structure with a size limita-
tion . The maximum size for the fixed set or , for a subset
of any periodic set, is 1000 bytes or 100 defined fields and
groups. The format of the NIPS record is defined in Appendix A
of NIPS User ’s Manual, Volume I - Introduction to File Concepts.

Fixed data is the simplest data to process in NIPS. Thus,
it is advantageous to store all nonrepetitive data in the fixed
set. If, however , the set size limitations are exceeded, fixed
data could be stored in a periodic set. If this is done, it is
best to define as periodic those data items most likely to be
blank. When they are blank , that storage space will not be
required. This technique could be employed to save space even
if the original set size were not exceeded.

42 CR-i

- ~~~~~~~ —- - - ______- -- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

has shown that processing queries serially against a single
file is significantly faster than attempting parallel queries.

Multiple data sets on the same pack also cause device
contention if both data sets are queried at the same time.
Ideally , each NIPS file in the TP environment should be on a
separate disk pack . This, however, is impractical, since the
number of available disk drives would quickly limit the number
of files that could be mounted at any time.

It is possible for a NIPS file library to contend with
its associated data file if resident on the same pack . This
should not be a significant problem unless lack of free core
requires frequent rolling of tables and subroutines. If the
tables and subroutines can remain resident throughout the
query , then library access and resulting contention should be
minimal.

An Index Data Set does not compete with its associated
file when mounted on the same pack . Accesses to the Index
Data Set and to the master file are performed serially by
QUIP. Processing of the Index Data Set is completed prior to
reading the data records from the master file. -

-

* Online file access can be improved by allocating the
file index and prime data area to separate devices. The prime
data area can also be allocated to several separate packs.
These techniques reduce the contention caused when multiple
terminals access the same file concurrently .

5.1.3 Terminal Versus Batch Applications

In many applications , the user has the choice of running
in the batch or TP mode. Wherever possible, terminal queries
should be limited to relatively short, precise portions of the
data base. Sorting of output should be limited.

Stored queries that are run on a regular basis and have
output dumped to the printer should be initiated as batch jobs
by the remote job entry (RJE) feature of EDIT. Relieving TP
of a heavy load of production type TP queries improves the TP
responsiveness to ad-hoc queries.

5.1.4 Restricting File Search

Two NIPS capabilities can be used to improve TP response.
These are LIMIT and secondary indexing.

LIMIT restricts search of the file to records that fall
within the range of the LIMIT statement. If the upper range
of the LIMIT includes the last record in the file, ISAM reads
all pad records (if present) until it reaches the end—of-file .
When using the LIMIT statement in this manner, it is important
to use the NOPAD option when creating the file.

129 cH—l

-- - _ _

Secondary indexing restricts search of the file to those
records that can possibly satisfy the query, based on evalu-
ation of clauses containing fields specified as index fields.
The secondary indexing capability is discussed in section 3 of
this document.

5.2 Terminal Operating Techniques

This subsection discusses a number of techniques which
can be employed by the terminal user to improve overall TP
operation or to circumvent potential user errors.

5.2.1 General TP Procedures

The LOGON, LOGOFF requirements may vary by installation.
As a minimum, the user should include his name when logging
on or off. Also, any problems encountered during the terminal
session should be recorded using the REMA RK S request. For
example: -

REMARKS UNIT BUSY l300~-132Q-JONES.

Information from the LOGON, LOGOF~~ M~L requests is
recorded on the TP Log (DDNAME=STATRECS). This iiiThrwation
assists systems programmers in isolating any problems that
might occur.

As soon as the user is logged on, he should send a message
to the operator requesting mounting of the desired pack(s).
For example:

PLEASE MOUNT PACK 123456-JONES . —1M

Similarly , he should tell the operator when he has finished.

I ’M FINISHED WITH PACK 123456-JONES . ~,M

The user should verify that his data base is on the desired
pack prior to starting the terminal session. The following
sequence has frequently caused deletion of a production data
base from its pack :

a. UTBLDSAN to create tape file

b. Delete file from disk pack

c. Perform production update on tape file

d. Restore new file to disk using UTBLDISM.

130 CH—l

d. Add Basic JCL from Source Library

/GET MEM=JCL1 LIB—TEST36 OL
/LIST VE

EOM RECEIVE D
EDIT PROCESS COMPLETED. START CONVERSATION.

N

RECORDS 0000 THRU END OF EDIT WORK FILE
//TP999901 JOB (555,1234,12,U,0000) ,JONES6633,
// CLASSaC,REGION 1 0 0K
/*VoLU~~S ND1234
/*SCHEDULE TAPE9 O TAPE7=O DISK=l
//ABC EXEC XQUIPSD,XSAM=TEST36O ,VISAM= ‘SER=ND1234,
II LIB=TEST36O ,VLIB= ’SER=ND1234’ ,CL=U,CL1=U,CL2=U
//SYSIN DD *
FILE TEST36O. CLASS UNCLASSIFIED
LIMIT SERV NAVY.
LIST UIC PERS MEQPT

e. Tailor JCL for this run

/C 1 *9999*0205*
/RESEQ
/L 1E
EOM RECEIVED
EDIT PROCESS COMPLETED. START CONVERSATION.

N

RECORDS 0000 TH RU END OF EDIT WORK FILE
//TPO2O5O1 JOB (555 , 1234 ,l2,U,0000) ,J0NES6633,
/ / CLASS C, REGION=lOOK
/*VOLU~~S ND1234
/*SCHEDULE TAPE9 O TAPL7=0 DISK—i
//ABC EXEC XQUIPSD,ISAM—TEST36O ,VISAM= ‘SER~NDl234’,
II LIB-TEST36O ,VLIB= ‘SERaND123U ,CL=U,CL 1 U ,CL2=U
//SYSIN DD *
FILE TEST36O. CLASS UNCLASSIFIED
LIMIT SERV = NAVY.
LIST UIC PERS MEQPT

f. Submit Job for Batch Execution

/SUBMIT 1E

133 CR—i

5 .2 .5 Access to EMQ and OMQ

The /LIST operator in EDIT places data on the OMQ , if no
EDIT errors are encountered . EDIT advisory messages are placed
on the Edit Message Queue (EMQ) . After successful execution
of LIST, the user receives the START CONVERSATION message .
At this point, he can communicate with either the OMQ or the
EMQ. He selects the OMQ by using the paging corrunand N. He
selects the EMQ by using the paging command E. All subsequent
paging operations will be applied to the queue selected. To
review the other queue , the user must scratch or hold the queue
he is working with and execute the PAGE program (~~ P). He
may then access the alternate queue.

#5.2.6 Record ID Retrieval

SODA should be considered as a retrieval and output tool
for terminal applications . If the record ID of the requested
record is known , and a speci f ic output forma t is required,
SODA can be used to display required data from a single record.
SODA provides extremely fas t response because of two factors :

a. The record ID of the desired record is
known and no file search is needed .

b. SODA executes a precompiled logic
stat~~ent and requires no translation
phase. A QUIP query must be translated
be fore it is executed.

The record ID and logic statement ID entered at the
terminal is processed by a user—written logic statement
which formats the output display .

5 . 2 . 7 VIEW Program

Many standard batch and online output requests can be
anticipated following the f i le update . The production of
predefined reports can be accomplished as part of the
regular f i l e update cycle , and the outputs can be - saved on
distribution data sets.

Once the output reports are stored on a distribution
data set whi ch is accessi b le by the terminal , the outputs can
be selected and viewed at the terminal as required.

134 CH—1

~ 1-~~
.
~

- - ---—-- ------. — -----~~ -- — — — — —

The VI EW program formats a list of output report titles
(of ten called a menu) and allows the user to page through the
list and select a report to be viewed . Thus users not
familiar with NIPS TP and the QUIP query language can choose
an output from the menu and page through it with a few simple
commands . This capability makes the data accessible to the
decision making personnel. In addition , response is almost
instantaneous , since no data base search is required.

Use of distribution data sets and VIEW should be con-
sidered as an alternative to producing batch reports which
are required as reference material by multiple users. The
convenience and flexiblity of terminal access using VIEW , as
well as the savings in printing and distribution costs can,
significantly improve operating efficiency .

The use of the VIEW capability is discussed further in
section 2.7 of CSM UM 15-74, Volume VI — NIPS Terminal
Processing (TP).

134.1 CR—i

E l
= - -

-

- I I -

- I IT
~~~T:~~ I- ~~~~~- ~~~~~~ t~~~: I±’

_ _  

I ~~~t ~~ =
_ _ _  ~~~~~ T~~ I I• ~~L2.~~~~L~

_ 

~ - H
- 

- -
:± -tIL~ V,. :14 :aJi - - -  — — —~~~~~~~

~~ —

t~1 ~~~~~~~~~~~~~___ —~~~
—

~ -L ~~~~~~~~~~~~~
~~- ~: ~± <lET ±~

~J I L  1~~~~~~’HE~

I

!
_

~~~~~

_

~~ ~~ ~~
— 1111

~~~~~ L~~~~~i- 
:ç-~1 -~. — -

~
—
~~~ - --— —-- 1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- - - -~~~~~~~~~- - -  ~~~~~~~C. -

~: L ~I H E = T :~~~~~~~ i 

‘

~F~~~~~~

’

189 CR— i

- 
- -- ~~~~~~~~~

‘1

- j z i~~~~~~ PAG*1~BIiI~ —aeOT 711J~~~ 
- -

-L
~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~-±T~~~ ~~


£_ —- - -- -

~~~~~~~~~~~~~~~~~~~~~~~~~ !! ~~: : :~~ri~~

~~~~~I~~~~~~~IHLliI ~~~~~~~~~~~~~~~

m - “ w ~j çj ~~~
—. •

:~~L + ~~~~~~~~~~~T L l
~~~~~~~ 

_
~~~~~~~~~~

. _

— -s — ~ ~~ ...4 —~ ~~~~ .3.. ~~
-. ‘

~~ * ~~~~ —I ~~4

~~~~~ t~~~~~~~~TjII1~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ ~~~_ - _ -l 

~~~~~~~ :~~~~~~~~~~~~~~~~~ zt
— — -

~, ~ ) ~~~~~ ~~~~~~~~~~~ .J

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

: I T ~~~~~~~~~~~~~~ I I 1

190 CR—i

- .-.——————,—--——- -—-—- — ,— - - -
~~

-

It is possible to write a COBOL (or FORTRAN or PL/l)
interface routine to perform interterminal output . Needed
parameters are the terminal name , and an 01 record layout
that begins with 02 USTADDR PICTURE S99999 COMPUTATIONAL.
This will leave room to store the UST address. The output
data must follow as the second field.

2 01 C~ — l

- - - -- - - - ~~~~~~~~~~~~~~~~~~~~~~ -- - — ~~~~~~~~ -

-

-- — — - _ .a — - - —~ - . —~~

IN 0 E X

A C C E S S METHOD 3.5
(.2
6 .8

ACCESS METHODS SPACE 6.2
ACT iON CO DE 4.2 .2.2
A CT ION STATEMENTS IN RIT 4 .3 .2 .3
AD—HOC QUERY 5. 1.3
A~ () (Q P)
A L P H A FIEL D 3.4.4
A L P H A M O C t ~ 4. 1.4.1
A 1PH-~ TO NUMERIC MOVE (Up) 4.3.2.9
ALPHA / NU MEP COMPARE (OP) 4 .3 .2 .9
ALPH A~3FT IC FLU INi TI A L IZI~TION 4.1.5.1
AL PHABET IC LITE RALS 4.3.2.2
A L P H A ~3ET IC SUFFIXING TN R IT 4 . 3 . 2 . 4
A N Y w)DIFER 4 .2.3.2
A P P L I C A T I ’~N PROGRAM 5.2.1
A P I T H M E - T I C OP ER ATIONS IN RIT 4 .3.2.8
A SSE MBLY LISTING o F FM LOGIC 4.1.1.2
BACKUP FILE 3.2.1.5
BACKU P INUEX DATA SET 3.2.3
BAT CH 3.2. 2

5.1.3
3PA M 3.2.3
BFT WE FN (BT) TN SKEL ETON QUERY 4.2.1.2

4.2.2.4
BrTwFEN R~ CDR OS MODIFIER 4.3.2.7
BINA R Y FIEL ’~ INITIAL IZ A TION 4.1.5.1
BINARY MODE 4.1.4.1
PLAN K DFCP~14L FIELD (UP) 4.3.2.9
B L A S T 5.1.2
BLOL 4.1.1.2

6.~BLOL CNT~~!FS 3.5
BL K S I Z F 6.1
BLOCK CF P IT CODE 4 .3. 2 . 1
BLOCK SI ZE 5.1.1

6.1
6.2
6.3
6.5

BL1UI PA P~~~ET ER IN P IT 4 .3 .2 .6 . 1
BOO L E A N L”G I C IN RIT 4 .3 .2 .6. 1
PPt.M 6.8
B P FA K L I N ES SECTION (UP) 4.3.2.6.3
C A N D I D A T E L I S T 3 .2 .3
C A R D T RA NS~~CT IflN 4.1.4
c~

,TA L~~GEr P~ f l C F D U R E S 6
CHANGE LC GIC (OP) 4.3.2.6.1

203 CH—l

I N D E X

CH,*NNEL 6.8
C i RCL E (C I R) IN SKELETON QUERY 4.2.1.2

4.2.2.4
CLAUSE 3.2.3
CODING CONVENTIONS (FM) 4.1.1.4
Cfl (.UMN LABEL 3.3.2
COMPA CTICN 3.4.1
C :WPAP F ALPHA/NUM ER (O P) 4 .3 .2.9
C C J M P I LAT IO N OF RIT 4.3. 1.1
COMPIL E 3.2 .2
CrJ ~’P I L E D R ET R I EV A L 4.2.1.3
C OMPLETE LOGIC (OR) 4.3.2.6.1
COMPONENT SPACE 6.2
COM PRESSION 3.4.1
COMPRESSION /COMPACT ION 3.4.1
C1?~PUTE (flP) 4.3.2.3
CThDITION CODES 6.7
CONDITION ON ALPHA SUFFIX LINE 4.3.2.4

4.3 .2 .6
C ONDIT ICNAL EXECUT TON OF STEP 6.7
CONDITIONAL LOGIC IN ~~iT 4 .3 .2 .6
CONTENTION, CHANNEL 6.8
CONTFNTICN , D A T A S E T 5.1.2
CC-NT ENTT O N , DEViCE 5.1.2

6.8
CONTENT IPN ,I/O 6.8
C ON TR O L CAR D V E R I F I C A T I O N (F M) 4.1.1.3
CO NTROL FIELD 3.3. 1
COORD FIELD 3.4.4
COO RDINA TE MODE 4.1.4.1
CO RE REQUIREMENTS 3.5

~~ RRE-CTIN G IMQ 5.2.2
COUNT 4.4.2 .4
CP—67 5
?F4TE C4RC PARAMETE R (3001) 4.3.2.6

C~~OSSING SET BOUNDARIES 4.2.3.2
JASD 6.1

6.8
D A TA C ON V~~RSION 3.4.2
DATA ERPO~ S IN PIT 4.3.2.9
DATA FIFLO IN ITI A L IZAT If N 4.1.5.1
U~ TA FILE ANA LYS IS 3.2.4.5
DAT A Mfl DE A PPENDIX B
DATA RECORD A PPFr~DIX 3

3.4.2
6.2

OA T A ~EC 0RD LiM ITA T ION ON QOC 4 . 2 .1 .6
,OAT A ~EC0PD SIZE 6.2
O.~T A PEQU IREM FN TS 3.1

CH- 1

204

- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _

- a - - . - - .
-

-

- -~~ - -. -

I N D E X

DA TA SET ALLOCATI ON 5.1.2
DAT A SET CHARACTERISTICS 6.1
DAT A SET CONTENTION 5.1.2
DATA SET LABEL 6.3
DAT A SET SPACE 6.1
DATA SOU RCF 3.1
DA TA TRANSACTION 3.3.2
DATA VALIDA T ION 3.2.4 .4

4.1.3.2
DATE OF UPDAT E—IN DEX DATA SET 3.2.3
OCR 6.3

- DECIMAL FIEL D BLANK (OP) 4.3.2.9
fl~ c IM AL FIELD INITIA L IZATION 4.1.5.1
DECIM AL MODE 4.1.4.1
DE FA ULT SPAC E ALLOCATI ON 6.1
DELETE BYTC 4.1.2.1.1
DELETED SU bSETS APPEN DIX C
DELETING LOGIC STATEMENT 4.1.4.2.1
DESIGN NI PS FILE 3
DEVICE CONTEN TION 5.1.2

6.8
D I C T I O N A R Y

3.2.4.5
D I C T I O N A RY M A I N T E N A N C E U T I L I TY

3.2.4.5
D I C T IONA RY TABL E 3 .2 . 4 . 3
D I R ECT ‘AC CESS STORAG E DEVICE 6.1
PTQ FCT SUBSET UPDATE 3.3.2

~ IPECTORY BLOCKS 6.1
DIRECTORY SPACE 6.1
DISK TRANSACTION 4.1.4
DISTRIBUTION DATA SET 5.2.6
DIVID E OP ERA TIONS IN PIT 4.3.2.8
DI V ISIGN BY ZERO (OR) 4.3.2.8

4.3.2.9
DUPLICAT E NAMES ON LI BR A RY 4.3.1.1
EDIT 3.3.2

5.2.4
EDIT MESSAGE QUEUE 5.2.5
EDIT SA MPL E 5.2.4
FFFIC !FNCY OF FILE UPDATES 4.1.1.5

* EFFIC IL~~T PROCESSING (EM) 4.1.1
EFFICI EN T F ASP PROCESSING 4.2.1
EJECT S~~AT FMENT 4.3. 2 .7
EJECT WITH OVERFL OW LINE 4 .3 .2 .7
EM~ 5.2.5
E N T E R 5 .2 . 1
ERFUP CORRECTION

3.2.4.5

CR-i
205

- - - - -—— ,_ _ _ _ _ _ _

— - — - - -~ —~~

IN~~EX

E R ROR M~~~SAGE, DATA COP) 4.3.2.9
ERROR RET URN, SUBROUTINE (OR) 4.3.2.9
EXCEPTION RANGE UPDATF 4.1.3.1
EX CEPT ICN UPDATE 4.1.3.1
EXCEPT ION VS SUBS ET EXCEPTION 4.1.3.1
E X P L IC I T PAR E NTH ES IS 4.2.3.1

4 .2 .3 .2
E X T R A C T OF FILE 3.2.1.4
EX T R A C T OF F IL E 3.2.1.5
FFT AND L .S . ,OM IT FROM QOF 4 .2.1.3
FIELD SIZE 3.4.4
F ILE (Q U I P) 4.4.1
FILE ANA L Y S T S S T A T I S T I C S 3.5
FILE BACKUP 3.2.1.5
F ILE CONTROL SECTION (O R) 4 .3 .2.1
F ILE DESIGN 3
FILE GE N ERATION 3.2.1.1
FILE LIBRA RY 5.1.2
FIL E L I B R A R Y U T I L I Z A T I O N (FM) 4.1.1.1
F ILE L I B RA RY UTIL IZAT ION (UP) 4 .3.1.1
F ILE ORGANIZAT ION 3.2.1

3.2.1.5
4.1.2

F ILE SEARCH WITH L IM IT (Q U I P) 4.4.2.1
F I L E SE ARCH WITH LIMIT (R A S P) 4 .4 .2 .1
FILE SEG MENTATION 3.2.4

3.4. 1
FILE S I Z E 3.4.1

6.1
F ILE UPDAT E 3.2.1.2

4.1.5
FILE UP DAT E EFF ICIENCY 4.1.1.5
FIND (QUIP) 4.4.1
F IR RECOR D 4 .2.2.2
FIXF D L ITEP .A LS 4.3.2.2
F IX E~. SET 3.4.3
FIXED SET VARIABL E DATA 4.1.2.1.5
FM 3.2.3
FM A B E N C 4 .1 .2 .1.4
FM CO DING CONVENTION S 4.1.1.4
FM C ONTROL PROCESSING 4.1.4
FM CONTROL SPECI FICATION S 4.1.4
FM CCNVE NT IONS 4 .1.4
FM EFF IC IENT PROCESSING 4.1.1
FM LANGUA G E CH4 RA CT~~P I S T I C S 4.1
F~ OVERVIEW 2.3
FM PAR M OPTIONS 4.1.1.2
FM PRO C OVERRIDES 4.1.4
FM PROCESS BLOCK S I Z E 4.1.1.2

206 CR—i

—~~~

I N D E X

FM .INST PAN 4.1.4.1
FM.PS T PAN 4.1.4.1
FMNDA TA CD 4.1.4
EMS CON TP ’il STAY FM E~JT 4.1.1.3
FMSAMOUT Or’ 4.1.4
FO R (QUIP) 4.4.1
FO RM AT C~ThT-~JL IN SIT 4.3.2.7
FORMAT CD~JTROL WITH COMPLFTr 4.3.2.6.1
FORMAT CC~ TRDL WITH OVERFLOW 4.3.2.7
FR OVERVIEW 2.2
FRAGMENTATION 3.5

6.2
FREF COPE 3.5

6.2
FRE QUENCY OF RETRIEVAL 3.2.3

~S OVF RV IC W 2.1

~S STE P 2 2.1

~URTHFQ 4.2.3.2
FUTURE FILE O PEFA TIDN~ 3.5
GFN= 4.1.4
GENE RATIO N 3.2.1.1
G1)TO 4.3.2.6.1
HISTORY FILE 3.4.1
HYPHEN OPTION 3.2.4.1

3.2.4.4
I/C (TERMINAL) 5

5.1
I / C BUFFER SPAC E 6.2
I/O BUFFERS 3.5

6.5
I/O OPERATI ONS 6.8
IFBCQP Y 6.1
IrFBPI4 6.1
IV HMCV E 6.1
IF (QUIP) 4.4.1
IF CHANGE LOGIC IN PIT 4.3.2.6.2
I F COMPL ETE LOGIC IN SIT 4.3.2.6.3
I F LOG IC (OP) 4.3.2.6
lED 3 .4 .1

4.3.1.3
IMPLI ED tO~Y LOGIC 4.2.3.2
IMPLIED PARENT HESIS 4.2.3.1

4.2.3.2
IM Q 5.2.1

5 .2 .2
5 .2 .3

I NDEX CLAUSES 3.2.3
INDEX DAT A SET 3.2.3

3.2 .4.3

CR-i
207

- - - - -
—

I N D E X

INDEX DATA SET 5.1.2
INDEX DATA SET CONTtENT ION 5.1.2
INDEX DATA SET MAINTENANCE

3.2.4.7
INDEX DATA SET SIZE

3. 2 .4.6
INDEX DESCRIPTOR RECORD 3.2.3
INDEX FIEL D 3.2.3

4.2.1.5
INDEX FILE 4.2.1.5
INDEX MAINTENANCE 3.2.3
INDEX PROCESSING 3.2.3
INDEX SPECIFICATION UTILITY

3.2.3
3.2. 4.6
3, 2 .4.7

INDEX TRACK 6.1
INDEX VALUE 3.2.3
INDEXED SEQUENTIAL 3.2.1
INDEXING 3.2.3
INDEXING PARAMETER 3.2.3
INDIRECT ADDRESSING 4.2.3.4
I\IDIRECT ADDRESSING (FM) 4.1.3.3
INPUT CONVERSION 3.4.4
INPUT MESSAGE QUEUE 5.2.1
INQUIRY PROCESSING 3.2.2
INTERFILE OUTPUT 4.3.1.3
INTERSET COMMUNICATION 4.1.5.2
INTFRSET LOGIC 3.4.3
INTRASET COMMUNICATION 4.1.5.2
ISAM 3.2.1

3. 2.1.5
6.1

ISAM EFFICIENCY 3.2.1.2
ISAM FILE PAD RECORDS 4.1.2.1.1
ISAM FILE PROCESSING 4.1.2.1
ISAM ORGANIZATION DESIRABILITY 4.1.2
ISAM OVERFLOW 4.1.2.1.5
ISA M SPACE ALLOCA TION 6.1
ISAM TRANSACTION 4.1.4
IS AM UPDATE 4.1.2
IS AM/LI M IT RESTR ICTIONS 4.2.1.4
IX FMKSD 3.2.4.1
JCL CVERR !DES IN FM 4.1.4
K E Y W O R D

3.2.4.6
3.2.4.7

KEYWORD ANA LYSIS
3. 2.3

CH-i
208

!NDEX

KEY WORD ANALYSIS 3.2.4.5
KFYWORD ANALYSIS PROGRAM 3.2.4.1
KEYWO RD INDEX 3.2.3
KEYWORD INDEXING 3.2.4

3.2.4.4
KEYWORD TABLES 3.2.3
LABEL 6.3
LANGUAGE CHA RACTERISTICS 4
LANGUAGE SELECTION 4.1.3.2
LA RGEST RECORD SIZE 6.2
LIBR AR Y 6.1
LIBRA RY ALLOCAT ION (NEW) 6.1
LIBRARY REORGANIZATION 6.1
LIBRARY SPACE ALLOCATION 6.1
L i B RA R Y U T I L I Z A T I O N 4.2.1.1
LIBRARY UTILIZATION (FM) 4.1.1.1
LIBRARY UTILIZATION (UP) 4.3.1.1
L I B R A R Y U T I L I Z A T I O N (R A S P) 4 .2 .1 .1
LIMIT APPENDIX C

3. 2.1.3
3.2.2
3.3. 1
5. 1.4

L I MIT (Q U I P) 4 .4.1
4.4 .2 .1

L IM IT (R A S P) 4 .2 .1 .4
4.4 . 2 .1

L I S T (R A S P) 4 .2 .1 .3
LIST (FM) 4.1.1.2
LI ST PARAMETER (OR) 4.3.1.2
L I TE RALS IN P I T 4 .3 .2 .2
LOAD (QUIP) 4.4.1

4. 4 . 2 .3
L OA D MODULES 6.2
LOG IC STA T E MENT CON T RO L 4 .1 .4 .2
LOGIC STATFMENT REPL ACEMENT 4.1.4.2 .1
LOGIC STAT EMENT SEQUENCE 4.1.4.3
LOGICAL RECORD 3.3.1

3.4 .2
LOGOFF 5 .2 . i
LOGON 5.2.1

* MASTER FILF (SUBSET OF FOR TP) 5.1.1
MATRIX 3.3.2
MAXIMU M PROCESS BLOCK SIZE APPEN DIX C
MAX IMU M SUBSET SIZE 4.1.2.1.1
MCS INSTRUCT ION 4.1.2.1.4
MERGED El it OUTPUT 3.4.1
MERGED FILE RETRIEVAL/OUTPU T 4.3.1.3
MESSAGF TO OPERATOR

209

I N D E X

MODE A PPENDI X B
MOUNT DISK PACK 5.2.1
MOV E (OP) 4.3.2.3
MOV E ALPHA TO NUMERIC (UP) 4.3.2.c
MOVE SPECIFICATIONS 4.3.2.3
MOV E STATEMENT IN SIT 4.3.2.3
MUL (

~~P) 4 .3 . 2 .3
MULTIPLE TPANSACT ION SOURCES 4.1.4.1
MULTISTE? JOB 6.7
MULTIVCLUM E SORT 6.6
MVF 3.2.4.4
MVR 3.2.4.4
NA ME OF Rh 4.3.1.1
NEW FILE LANGUAGE CAPAB ILI TIES 4.1.3.2
NEW RECORD OVER FLOW 4.1.2.1.5
NEW TRANSACTION FIELDS 4.1.4.2.1
NFL CAP?~BILITIES 4.1.3.2
NIPS tILE LIBRARY 5.1.2
NIPSOUMP 3.4.1
NOEL (P-ASP) 4.2.1.3
N2PAD 4.1.2.1.1

4. 2. 1.4
5.1.1
5.1.4

NOROS 4.1.1.2
NUMER FIEL D 3.4.4
NUMER/ ALPH A COMPARE COP) 4.3.2.9
NU MERIC LITERAL S 4.3.2.2
OM CAPABILITIES 4. 1.3 .2
OM K EYWORD DATA VAL IDATION 4.1.3.2
OMIT APPENDI X C

3.2 .2
OMIT FFT AND LS FROM QDF 4.2.1.3
OMIT LOGIC 4.3.1.4
OMIT STATE MENT POSITIONING 4 .3 .1 .4
OM Q 5.2.1

5 .2 .5
ONLINE 3.2.1.4

3 .2 .2
OP 3.2.2

4.3
* OP OVERVIEW 2.5

OP PARM OPTiONS 4.3.1.2
CPEP .AT ING SYSTFM 6
ORDINARY MAINTENANCE 4.1.3.2
CS PERFO PMAN CE 6.8
OUTPUT CONTROL SECTION (DPI 4.3.2.1
OUTPUT MESSAGE QUEUE 5 .2 .1
OUT PUT PROCESSOR 4.3

210
CR-i

I NDE X

OUTPUT STAT EMENT (QUIP) 4.4.1
OVERFLOW 3.2.1

3.2.1.2
3.2.1.3
3. 2 .1 .5

OV ER-FLOW (ISA M) 4.1.2.1.5
OVERFLO W TRACK 6.1

~VF PL AP (OVP)IN SKELETON QUFRY 4.2.1.2
OVE RLA P (OVP)IN SKELETON QUERY 4.2.2.4
Pt - ’) RECORDS 3. 2.1

3. 2.1 • I
- 3.2.1.2

3. 2.1.5
4.1.2.1.1
4.2 .1 .4
5. 1 • 1
5.1.4

PH: PEC OROS AND LIMIT 4.2.1.4
PACING (IPI 5.2.5
PARA M KtY WORG (OP) 4.3.1.1
PARENTHESES IN ARITHMET IC (UP) 4.3.2.8
PA RENTHES ES IN OP CONDITION 4.3.2.6
PA PM OPTIONS “.2.1.3
PA~ M OPT I~’~ S (FM) 4.1.1.2
PAPM OPTIONS COP) 4.3.1.2
PARM OPTIONS (RASP) 4.2.1.3
PAP M=NI1 PAJ (UTBLO !SM) 4.1.2.1.1
PA RTI A L tIEL D 3.3.2
PAPT Z AL FIELD CONVERT EC VA LUE 4.3.2.3
PA RT IAL FIELD NOTATION (QUIP) 4.4.2.2
PtP T IAL C IF L fl~ FOR . STMT (QUIP) 4.4.2.2
PA RTIAL FIELD—OUTPU T IF (QUIP) 4.4.2.2
PA PTITI ON SIZE 3.5

6.2
POS OIRECTL~ Y 6.1
PE~ CE~ T FILF RETRIEVE D 3.2.3
PFRC F NT FILE UPUATED 3.2.1.2
PrRCENT FIL F UPDATED 4.1.2.1.2
prRIo n (QUIP) 4.4.1
PF~~IODI C DAT A (F M) 4.1.5.2
PE~~TflDI C D~ TA IN BR E AKL INES 4.3.2.6.3
PEQ IrC IC DATA I~ LINE CONDITN 4.3.2.6.1
PEP IOCIC DA TA ON LINE ALPHA 4.3.2.4
PE RIOD IC DATA RETRI EVAL 4.2.3
PERIODIC OATA WIT H SPACE 4.3.2.7
PEPIGO IC L ITERA L S IN R h 4.3.2 .4
PER IODIC SET 3.4.3
PICTURE 4.1.3.2
POOL CA PABILITIES 4.1.3.2

211 CH—1

_
--- -- ----

I N D E X

PPESEQUE NC ED TRANSACTIONS 4 .1.1 .5
PRI ME SPACE 3.2.1.5
PRINT SECTION (UP) 4.3.2.1
PRINT SUPPRESSION (OP) 4.3.2.3
PRINT SUPPRESSION VAR iABLE SET 4.3.2.5
PRINTING VARI A8L E FIELDS 4.3.2.5
PRINTING VARIABL E SETS 4.3.2.5
PROCESS BLOCK APPENDIX C

6.2
PPOCESS BLOCK SIZE 3.4.2

3.5
PROCESSING 8LOCK SIZE (FM) 4.1.3.2
PROCESSING OPTION S (FM) 4.1.3
PROCESSING TIME LIMITATIONS FM 4.1.3.2
PROGRAM PFSICENCE IN COR E 6.8
PUNCH/TAPE SECTION (OP) 4.3.2.1
PUNCTUAT ION (QUIP) 4.4.1
PURGE 3.4.1
PURGE UNNEEDED SUBSETS 6.2
QOF CONT ENTS 4.2.2.2
Q!SAM 6.8
Q~ T CONTENT 4.2.2.2
QRT/QDF USER NAMES 4.2.2.3
QRT SP 6.1
QS AM 6 .8
QUAL IFI~~D DATA F ILE 4 .2 .2 .2
QUALIF IED DA TA SET NAM E 5 .1.1
Q U A L I F i E D RECORD TABLE 4 .2 .2.2
QU ERY (Q U I P) 4 . 4 . 1
QU ERY PRO CESSING , PARALLEL 5 .1.2
QUERY PROCESSING, SERIAL 5.1.2
QUICK INQUIRY PROCESSOR 4•4
QUIP 3.2.2

4.4
5 .1.1

QUIP RET R IEV AL 4 .4 .2
RANGE 4 .1 .3 .2
RANGE UPD A TE 4 .1 .3 .1
VANCE UPDATES U/a TRANSACTIONS 4.1.3.1
RANGE UPDATES WITH TRANSACTIO N 4.1.3.1
RA SP 4.2
RASP AN SWER FILE 4.2.2.2
RASP CC NTR O L MODUL E 4 .2 . 2 .1
RASP FILE MODUL E 4.2.2.1
PtSP LA NGUAGE CHA~.ACTER I STICS 4.2.2
Q A S P OVERVIEW 2.4
P~~~P PPCCFcSP4G PRACT iCES 4.2.1
P45P RE TR IEVAL LOA D MODULES 4.2.2.1
RASP S O URCE S T A T E M E N T S MODUL E 4 .2 .2 .1

212
CM-i

4- —---- ___

INDEX

RA SP S P A C E R E Q U I R E M E N T S 6.1
RASP/OP 3.2.2
RASP/OP ANS WER ENTRY RECORD 4.2.2.2
RASP/OP INTFRFAC ~ 4.2.5
READ / W R ITr HFAO S 6.8
PECFM 6.1
RECORD CHANGE TES TING 4.1.2.1.3
RFCU RP CONTROL GROUP 3.2.4
RECORD CO~1TROL GROUP 3.3.1
RECORD CONT ROL GROUP CI~ANG E 4.1.2.1.4

~ECORD IC RE TR IEVAL 5.2.6
RECOR D PROCFSS ING (OP) 4.3.2.9
RECORD SIZE 3.4.2

6.1
6.2

RECS IN 4.1.2.1.5
REDUCTION OF t ILE SEARC H 4.2.1.4
REGION SIZE 3.5
PEGION/PA 7TITION SIZE 6.2
RELAT I ONAL OPERATORS (QUIP) 4.4.2.1
PELAT I CNAL OPERATORS (RASP) 4.4.2.1
REMAIN DE P COP) 4.3.2.8
REMARKS 5.2.1
REMOTE JOB ENTR Y 5.1.3
REMOTE JOB ENTRY 5.2.4
DtORGANI ZE 3.2.1.5
REORGANI ZE INDEX DATA SET 3.2.3
PE PLA CFA B L E OPERANDS 4.2.1.2
REP 1ACEA ~ Lt VARI ABLES 4.2.1.2
REPLAC ING LOGIC STATEM ENT 4.1.4.2.1
RE P P E C O P O 4 .2 . 2 .2
R:SE T (UP) 4 . 3 . 2 . 3
~ES !DENT ROUTINES 6.8
RFSPCNSF 3.2

3.2. 2
RESPONSE TIME , TP 5.1.3
RESTO RF FILE TO DISK 5.2.1
PF ’RTFVA L 3.2.1.3

3.2.2
3. 2.3

RETRIEVAL (QUIP) 4.4.2
RETRIEVAL — RECORD 10 5.2.6
RETR IEV AL ANC SORT PROCES5OP 4.2
RETRIEVAL IN QUIP VS RAS P 4.4.1
RETRIEVAL NAMES 4.2.2.1
RETRIEV AL STA TEMENT (Q U I P) 4 .4 .1
SIT COCE BLOCK 4.3. 2 .1
SIT COCE SECTIONS 4 .3 .2 .1
SIT COMPIL ATION 4 .3 .1.1

213 CR—i

.

~

-—-- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

I N D E X

PIT EXECUTION 4.3.2.1
SiT NAME SPECIFICATION 4.3.1.1
RJE 5.1.3

5 .2 .4
SOAER RECORD 4.2.2.2
ROLLING 3.5
ROS 3.5

4.1.1.2
6.2

ROS (RASP) 4.2.1.3
PUS COP) 4.3.1.2
RUN OPTIMIZATION STATISTICS 3.5

4.1.1.2
6.2

SA M 3.2.1
3.2.1.5

SAM TR ANSACTION 4.1.4
SAM EFFIC IENCY 3.2.1.2
SAM FILE SEGMENTATION 3.2.4
SAM ORGANIZATION DES IRABILI TY 4.1.2
SA M UPDATE 4.1.2
SAMOUT = 4.1.4
SAV E AR EAS FOR CONDITIONS 4.3.2.6.1
SAVE SECTION COP) 4.3.2.1
SCAN PROCESSOR 3.2.4.1
SCAM P.IUTINF 3.2.4.1
SCAN SUBROUTINE 3.2.4.3

3.2.4.4
SC RATCHiNG IMQ 5.2.3
SEARC~

4 OF FILE WITH LIMIT (QU) 4.4.2.1
SEARCH OF FILE WITH LIMIT (PA) 4.4.2.1
S5CONDARY INDEX ING 3.2.1.3

3. 2.3
4.2. 1.5
5.1 .4

SECONDARY IF’4DEX ING—A CVANTAC ES 3.2.3
SECONDARY INDEXING—COSTS 3.2.3
SEGMENT CONT ROL RECORC 3.2.4
S ELECT 4 .2.1.6

5.1 .1
SE QUENCE OF SUBSETS 4.1.5.2
SE QUENT I AL 3.2.1
SET ABSENCE 4.2.3.3
SET S I Z E 3.4.3
S I G N I F I C A N T D I G I T S COP) 4 .3 . 2 . 8
S I Z E 3•4
S I Z E OF PIT BLOCK 4.3.2.1
SKELET ON QUERIES (RASP) 4.2.1.2
SKELET ON QUERY (QUIP) 4.4.2.3

214 CM—i

INDE X

SKELETON RETRIEVAL SUBSTITU 4.2.2.4
SODA 3.2.3
SODA RETRIEVAL 5.2.6
SORT 4.2.4
SORT (QUIP) 4.4.1
SORT KEY 4.2.2.2
SORT SPACE 6.6
SORTIN 6.6
SORT ING PERIODIC SETS 4.2.4
SORTKEY 4.2.2.2
SORTOUT 6.6

- SO RTSP 6.1
SOR TWKO 1 6.1
SOURCE DIRECT (QUIP) 4.4.1
SOURCE LI 3RARY 6.1
SOURCE RETRIEVAL (QU IP) 4.4.1
S O U R C L I B DO 6.1
SPAC E ALLOCATION APPENDIX 0

6.1
SPACE RE QUIREMENTS 6.1
SPACE RE QUIREMENTS—INDEX DATA 3.2.3
SPACE STAT EM ENT 4.3.2 .7
SPACE WITH COMPLETE LOGIC 4.3.2.6.1
SPACE WITH LINE LEVEL ALPHA 4.3.2.7
SPACE WITH OVERFLOW LINE 4.3.2.7
STANCARD LABE L5 6.3 -
START 5.2.1
STASH A REA APPENDIX C
STAT EMENT CONTINUAT ION—FM APPENDIX A.3
STAT EMENT CONTINUAT ION—FR APPENDIX A .2
STAT EMENT CONTINUATION—ES APPENDIX A .1
STAT EMENT CONTINUATION—OP APPENDI X A .5
STAT EMENT CONTINUATION— QUIP APPENDIX A.6
STAT EMENT CONTINUATION— RASP APPENDIX A.4
STATEMENT CONTINUATION—SODA APPENDIX A .7
STAT EMENT CONTINUAT ION—TARGE APPENDIX A.8
STATISTICS 3.5
STA TISTICS RECORD APPENDIX C
S T O P W O R D T A B L E

3.2.3
3.2.4.2
3.2.4.3
3.2.4.5

STORED RETRIEVAL NAM ING 4.2.2.1
STORED RETRIEVAL USAGE 4.2.1.1
STORE!) TP QUERIES 5.1.3
STRUCTURED CODE (FM) 4.1.1.4
SUB COP) 4.3.2.3
SU B F I LE 3.4.1.

215 CR— i

- - - • - — - • - - — •-~~ ~~~~~~~ -— — — -

------_

~

L.

~

-

IN D EX

SUBFTLE 5.1.1
SUBROUTINE ERROR RETURN (UP) 4.3.2.9
SUBROUTINE ROLL ING 5.1.2

6.2
SUBRTN CCNVERSION IN MOVE COP) 4.3.2.3
SU B SCA N 4.2.3.1
SUBS ET CONTROL FIEL D 3.3.1
SUBSET COUNT 4.4.2.4
SUBS ET EXCEPTION UPDATE 4.1.3.1
SUBSET OVERFLOW 4.1.2.1.5
SUBSET SCANNING 4.2.3.1
SUBSET SEQUENCE 4.1.5.2
SUFFIX

3.2.4.3
3. 2.4.5

SUFFIXING tOP) 4.3.2.4
SWITCHES (OP) 4.3.2.6.1
SYNONYM

, I.
- - e T*

SYSTFM ORGANIZATION 6.8
TABGEN 6.1
T A BLE CONVERSION IN MOVE (OP) 4.3.2.3
TABLES, ROLLING 5.1.2
TAILOR FILE FOR TP 5.1.1
T -~PE TRANSACTION 4.1.4
TCB 4.2.1.3
TCE3 t O P) 4.3.1.2
TCP APPENDIX C

4.2.1.3
4.2.1.3

TCP (FM) 4.1.1.2
TOP (Q P) 4.3.1.2
TCS A P P E N D I X C

4.2.1.3
TCS COP) 4.3.1 .2
TERMINAL ENTRY LENGTH 5.2.1
TERMINAL OPERATION 5.2
TERMINAL PROCESSING 3.2.1.4

5
TERMINAL RESPONSE 5.1.1

5.1.4
TERMINAL VS BATCH QUERIES 5.1.3
TEXT RETRIEVAL 3.2.4
TP 5
TR FILE SIZE 5.1.1
TP I /O OPERATIONS 5.1
TP LOG 5.2.1
TP MONITOR 5.2.2

215.1 CM— i

— — —-- --- -— - -—- — — — —

- — - — — —~~
- —

I N D E X

TP RESPONSE TIME 5.1.2
IPPECORD 5.2.1
TRACK CAPACITY 6.1
TRANSACTION FIELD MODE 4.1.4.1
TRAN SACTION FORMAT 3.3.2
TRANSACTION SEQUENCE 4.1.4.3
TRANSACTION SOURCES 4.1.4
TRANSAC TION SPACE 6.1
TRANSACTIONS 3.2.4.4
UNI QUE VALUES I N D E X FIEL D 3.2.3
UNIVERSAL MATCH C HARACTER— QUIP 4.4.2.3
UNUSED PRIME AREA IN ISAM FILE 4.1.2.1.1
U P D A T E 3.2.1.2
UPDATE METHODS 4.1.3.1

215.2
CM-i

_ _ _

