AD-A056 203 NATIONAL MILITARY COMMAND SYSTEV SUPPORT CENTER WASH==ETC F/@ 9/2
NATIONAL MILITARY COMMAND SYSTEM INFORMATION PROCESSING SYSTEM ==ETC(U)

JUN 76
JUNCLASSIFIED NMCSSC=TR=80=T2=-CHANSE~1

| Q e K
== £ 2
y

ol

e o]

T

N
O

Ty

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

A}

DEFENSE COMMUNICATIONS AGENCY /e ;\ ﬂ

COMMAND AND CONTROL
TECHNICAL CENTER

= J4 WASHINGTON, D. C. 20301 ,
" % i " ’ \7 ,/
National Military Command System Informa- R T

tion Processinggs stem 360 lxormatted File | o

o System (NIPS 3 S). NIPS Processin | e g
rremro.| HEndbook. Change 1. — g ﬁil'o June=1876)
' (

o !
o / { o - il /
TO: DISTRIBUTION _Ay-7606! 3 (1% &4 £l

SUBJECT: Change 1 to TR 80-72, NIPS Processing Handboék,
dated 1 February 1973

(1Y JNMC RSC -TR~50-72 ~CHAN ey

e I;a?er the enclosed change pages and destroy the

replaced pages according to applicable security

regulations.

A list of Effective Pages to verify the accuracy
of this handbook is enclosed. This list should bsD'"Dmc\ o
inserted before the title page. %

a4

JUL 14 978

ADAOS56203

3. When this change has been posted, make an ent

in the Record of Changes on the inside cover.

FOR THE DIRECTOR:

>

é_ 68 Enclosures
Change 1 pages
(] 9 g
Ll
—
[
[M)
[Approved for public releaset
‘ Distribution Unlimited
éo\—UT'ONQ,
>)
3 Z
< =
2 g
S $
3 A
7776-191°
U2 Do . p
- ———

EFFECTIVE PAGES - 10 JUNE 1976

This list is used to verify the accuracy of TR 80-72
after change pages have been inserted. Original pages
are indicated by the letter O, change 1 by the numeral 1.

Page No. Change No.
. TITLE 0

ii
iii-x
1-22
23-24.2
25-26
27-36.1
37-38
39-42.1
43-128
129-130
131-132
133~134.2
135-188
189-190

191-200
201~-215.2

= ———

LT

HO MO P Ok OFEF O KFEF O O+ O

iy L
j - LU I
| WalsucR 5

RV Caniam. ..

DISTRIDNTION AVAILARILITY oomst

AL i el

=
WWWWWwWLwwwwwLwwwwwwwwww NN

CONTENTS

Section Page

ACKNOWLEDGMENT .ccccocoscccsccsccccscssosssnes il
ABSTRACT ®© © 00 00 00000000000 0000000000000 X
1 INTRODUCTION .cccoeccccscsccscccscscscsssssccsa 1

NIPS PROCESSING OVERVIEW (ccccccoccccccccccs 4
. File StructUEIngiicalh s ale sicie sicle sints tie sainsis oo 4
o2 Eile SReVi8IOn e uiiiiie slclslc siols ois slasis sleicis s oo o isiss s 6
3 File Maintenanceeese soicesseisssssassss 8
.3 EM Initializatilioni t el cioie vie o ae e oo siesies s 8
o3 Logic Statement Compilation and
Library Maintenancecccceeeccescscccscss 10
Transaction ProCeSSOr ..ceececcccccscvasse AR R)
File Generation and Maintenanceceecces 12
Auxiliary Output Processorccceceeseeees 13
Retrieval and Sort ProcesSSOr ...ccceceessees 13
QUEPUE PIOCESSOY . ciuisvo oo siososasnasssssssass LD
Quick IRqUiry PIOCESSOL c...escecaoscaceaans L7

e o o
nuneEw

e e o o o o

aunswww

NIPS! ETLE DESIGN ccicseresoncsssnosecnvesscssy L1
Tasking Considerations ...cessecvecossoesssens &1
Response Considerationscceceecececcscees 22
File Organization ..« es e sieasisseesseessos L&
Eile Ceneratlon! cicii s seeeesloisiniesssolsesvas &3
FPile Update icscisssscssvssoniissassssnsosns &3
REEXIEVAL it it snivisimvivcvisssmaecnssosioe 8
Terminal ProcesSsing cccsscsesscssccsssscnsss 25
NIPS UEI1XEIET Jciiecvvicmesiesnonesovassses 25
Inquiry Processingsecececssecssonsssncss &7
Secondary INdeXing s.ccsisssvsvscsncvasasssss 28
RKeyword INdeXing..vsvevovscsvscossvvvvsssseans 35sl
Scan SUDTXoUtiNg ccseccsscesssvvavssvsvsssnses 35,1
Stopword TADleS ..ccossecssenccssosvessnsssis 30aH
Dictionary Tables ...csvsssissssnnissinssnve 354U
Data File Creation and Update ...cecceceeess 35.5
Data Pile ANalysis .ccveesveivesssvessnsonis 3966
Indexing the Data File .c.cceeeececceccscess 35.9

. e e o .
NEWN -

EE R B R

NNNNNNNNONNNNOONONDNODNNODNND
e L] . . . K L]
NouneEwN -

@ & & o e ® & & € o e e o & o e o

MEESEEFEFEEESEEEEEWNFHERERKFEMFKF

iii

Maintenance Considerationsccceececeeeess 35.11
File Segmentation ..ccccceevecocsccsasescssss 35.10

e s——

Section Page

File Field Specification ...ccccveeeeececeess 36
Control Field Considerations ...c.cccceceesess. 36
Other ConsideratiOnNS ..ccceececcsscccssccsss 38
Size Consideratlions ..caesssacscssossssionssce 39
Elle SEZe cciveoscssosasssaasssssssisesessseons 39
RECOEA STz | L ol shvisare sishois ol sislareteiaie o aremn Whe3
S o L R o e 8 B o S o P s iy e e R R S 1,
BieldSaizel ot oiosivis e laivie ols siaalaisa s iseieelas e ninse U3
Future File Operations ..ececcecccccccceccess Ul
Multifile Operations ..c.cececcecececcscccseass U8
Large File ProcessSingsececsesssecsscecsses 50

e ¢ o o o o o o & o o

NoueEsEssssrrwww
« o o o o o
EWN M N =

& WWWwWwuwuwuwwwww

Processing Technigques and

LANGUAGE CHARACTERISTICS ..cccccececsccsses 5l
File Maintenance (FM) .c.cceeccccccccscasscsas 5l
Efficient Processing Practices ...c.ccceeeeee 51
File Library Utilization ...ccuecescsseasssssce Dl
Use of FM PARM Options ...cceceececccccccess 51
Control Card Verification ...ccceccecececeee 53
Structured Code ..ccccccccsceccscscscacssase 53
Presequenced TransactionsS ..c.cccecececcecceces Sl
File OrganizZation :.sscveccscosssosasasssess DI
ISAM File 'ProcesSsing . «ssceecsasisessosnesene T
ISAM File Pad RecOrds c.ccescsvscocccccccccce 57
Percent of File Updated ..¢ccvececececccccss 58
Test for Record ChangesS ..cccseeccccccccasss 58
Changing the Record Control Group ..c.s.cccee. 59
ISAM Overflow Full .c..cccocccsccccccccnccnsces 60
Processing Optionscceesovevs00s0s0sesse 60
Update Methods ..cesscscssssovescassssscnsss 61
Language Selection .ccccceccsscscoccsnccsses 63
Indirect AdAressSing c.cccccccescsvscccnssacss 65
FM Control Specifications ..c.ccccceecececees 68
Transaction SOUXrCesS ..ccesccccccscssscscsccee 69
Logic Statement Control ...cccececcccsccccece 11
Logic Statement Replacement ...ccccceveeeess 71
Ordered Execution of Logic Statements 73
File Update ..cccccevsvcccsscccscscscsscsccsse 18
Data Field Initializationcccecececcceecs 74
Perfiodic DREE cicsvsisninssivsssssnmssesnste 1D
variable Data cicccissscsnscscssssasasssasss 10
Retrieval and Sort Processor (RASP) 79
Efficient Processing Practices ...ccceceseee 179
File Library Utilization ...cccecececccceces 79
Skeleton Queriescsoc00c0000s00s0ss0sees 80
RASP PARM OptiONS ..ccccesvscsccscccscscccscs 80
LIMIT (R R R E E I I B I B I I I I I B 81
Secondary Indexing ccceccecccccscsccscssccse 82
SELECT "EEEREEEEEEN N Era B I B 83

. L] . L . L]

WK HEKFRKFEFRE OFEWND-
L) Ll . Ll .
nNnEwhe

MU EEEEREEWWWWNNNNNODNNEF - HFF

.
(=

W= WNN M-

P E e E E P EEEEEEEEEEEEEEEEFEFEEEEEEFEEFEFEEEESF
I..IQ.l'...'....l'..‘.‘.........I..
NNNNNNNNHRHERRERHERERERERREREERRERERRRRR R

k2 o . . » . .
e
. e L - L] -

TN EsEWNH

i CH-1

E
(S N O NV R NS,

Section Page

General Language Characteristics 83
Stored Retrieval Naming Conventions 83
RASP Answer File (QRT/QDF) B84
QRT/QDF User NameS ..cccceccececccscecss 87
Skeleton Retrieval Substitution ...c.... 90
Retrieving Periodic Data ..cceecveecoess 90
Subsget SCANNING cevccssascsasesssrssensse 90
ANY Modifier (i eeiicieiiocicssnsananssves 92
Set BDSEeNCe i iciicessescssansonesessssie I
Indirect AdAressSing cccceccccececsccccces 96
Sorting Periodic Data ...cececeeceeccecesecs 96
RASP/OP INterface ..cscessoscscssccsssscs I8
Output ProcessSor (OP) .ccccscecccsccscscs 99
Efficient Processing Practices ..c.cece. 99
File Library Utilization ..cceccccececesss 100
OP PARM OPEIONS . «cvaiosioieniansvsssassesss 100
Interfile Output (IFO) .ceceeeceeccessss 101
ML TR CIciote shotellolel clalelslslis efelerele oietellcln sl eliess siurute s o, WROIL
General Language Characteristics ..¢.... 103
RIT Code Structure and Execution 103
EAEEE ALY o0 Sle e v ole olera elals aiaisinlelsls wie s mis oo aie 208
Action Statementsccccecececccscscs 106
Alphabetic Suffixing ..cceceeeecececceses 108
Printing Variable Fields and Sets 109
Conditional LogiC :.cecvssssessssasossses 110
Conditional ClauSeB ...eccssscvenssnsssns LLO
LEYS i« CHRNGES N Grlvte o eratets @i isivciom e o v o w6 os ot D2
EE ¢« s COMPEETE . vcsiosnnsvsssssscnsessses L1l
FOrmat CORtrol cociicensvasosveaansssaes LIS
Arithmetic Operations ...svessesssessses 118
DATA ERROR Message AnalySisS ...ccoceeee . 120
Quick Inquiry Processor (QUIP) 121
General Language Characteristics 121
Use of QUIP PARM OptionNS ..ccececeesecss 121
QUIP RetEfeval .ccicecisnsnssssvnresonunsve LE2
EIMIT sonsnvevossscnsivosoannssesssoecsise Log
Partial Field Notation ...ccceeececceacees 12U
Skeleton Query Substitution 124
COUNT @ O & 8 0 0 0 0P SO PSP PO P e e et e 125

sEWNH FWN

eEWWLwWWwWWwWwNhNDNDNDN

EWN -

« o o
wN -

WWWWWwN = NNODNDNDNDNDNODNDNDNODNDNNDEEE

oo ouneEsEwNn -

e e @& o o o o o ° o o

E e PR EF F EF F F E e e P F PP rEFEEFFEFEErEEEFFrEFFErEFrEFrFrEErErrErrrErrErrEesss
EEFFFEEFFFLLLLLWLWLLLWLLLLWLWLWWWWLWWLWNDNNDNDNDNDNDNDNDNDNODND

e e o o o o o

sEWN -

TERMINAL ENVIRONMENT ..ceccceccccccscses 126
Input/Output Considerations ...cceceeeee 127
1 Tailor File for TP Application ..c.ceeeee 127
2 Data Set Contentionccceecescsccsess 128
3 Terminal vs Batch ApplicationS.....eee.. 129
4 Restricting File Search ...cceeececeecee 129

Section
5.2
5.2.1
5¢2.2
5.2.3
5.2.4
5.2.5
#5.2.6
#5.2.7
6

2 6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
Appendix

A.l

>y
ONOUNEWN

Appendix
Appendix
Appendix

Appendix

mEEEE
U EWN -

M o O O

Page

Terminal Operating Techniques 130
General TP ProcedUresS ...sseececccescsass 130
Correction MeSSAgeS ..eceeesccessccssess 131
Seratching the IMQ .cccsssassrsassecsasses 131
Remote Job Entry (RJE) ..ceceovessssssoass 131
Access to EMO and OMO ...ceceecccecassss 1304
Record ID Retrievalecsecscescccsscas 134
VIEW PEOGIBM .cneconnsnsnsnssnsssnsesnsse LIG

OPERATING SYSTEM INTERFACE .¢cceeeeceese 135
NIPS Data Set SPACE Requirements 135
Region/Partition SiZze ...csessessssccces 139
Use of Standard Labelscecececcaeess 1U2
Qualified Data Set NameS ..cceeececccesss 1lU2
Variable Block S1i2€ ..cecsecseccccscnsesss 143
NIPS Sorting Considerations ..c.ceceeess LUl
Multistep Job Executionc.cecceee00.. 1lU5
Data Base and System Structure 145

NIPS Statement Continuation Conventions. 147
File Structuring (BES) cccescescssoseceons LUT

File Revision (ERJ s cineannsvcosssswe LT
File Maintenance (FM) ...cccceeeseesecees 152
Retrieval and Sort Processor (RASP) 152
Output Processor (OP) ...ccesessscssssss 155
Quick Inquiry Processor (QUIP) 155
Source Data Automation (SODA)ceeee.. 155
Table Generation Utility (TABGEN) 158

Data Mode Storage Characteristics 161
Process Block Characteristicsccec.. 164
NIPS Procedure Space USAge ...cceeeeeees. 168

Writing Terminal Processing (TP)

Application Programs ..ccccesccvescosce 170
Monitor Generationccccccecevccceses 170
Tutorial on Writing TP Programsee... 172
Use of Signon Programsssesseeeeses 182
TP Program Initializer Modules 187
Use of COBOL and PL/1l cieevevsensscnesss 188
Use of IFGET ROUtIN€ ..ccesceccsncnscces 192

vi CH-1

mE A _ao o o

Section

.
w N

.

.
WoNoyUtn

HMmmE e

INDEX
DISTRIBUTION

DD Form 1473

Use of IFPUT Routine
Use of IFEOJ Routine
Guide for COBOL Programmers
Deferred Paging ..cccecccccocsccs
Referencing the Output Queue
Inter-Terminal Communication....cceceeee

vii

® e 00000000 0000000000

DR R B BN B I N I I

T EEEEEE R N R R IR R IR I S B I I

© © 0 00 8 0 060 0606060609 5 © 0000608000000t esee0e s

© © 9 0 06 0 0 6 000 0009 06660066600 e 0080000000000

Page

192
192
194
195
198
199

203
216
220

CH-1

Figure

et
WNHOWONAAWL &EWN K

el el e el
R R RS

NN
oNOTWVMEWNKHO

wWwN
O W

e st g et

ILLUSTRATIONS
Page
ES EXCCUEION s o vie hsioisaesisisscanissn oniesssiesdssie 5
File ReViSiOn ProCeSS ..ccccceccccnccccocccaes 7
File Maintenance OVervViewcccescccccccese 9

Retrieval and Sort Processor Overview 14
Output Processor OVEerviewccecscecescsses 16
QUIP OVEEVIeW . icnensscescsiososasesssssasscssss 20
IndeX Datal Set i e cis e ola siaie o5 sl viasesmesisms 30
History File Procedure ..scccesccsoscsscssessee Gl
Statistics Before Tailoring COre ...cceceeeees U7
Statistics After Tailoring COreeeeeeeses U7
Structured NELECOAE . Jotls ¢ oie o asississ sisiseaisineas D9
StructurediOMECadel s e il e o olc s s sl ais aialaie o siae OO
EXCEPTION and SUBSET EXCEPTION

Logic Statements . cscsseccosseosssisesssonsssve 02
OM, NFL, and POOL CompariSon ..scssececscossses 066
Interset CommuUNiICAEION «.seesvcnssssscessoesass @7
RASP OP Answer Entry Record (ROAER) ...ccesee. 86
COUNT Examplesiic Siisilcveccaceesassseesnesnssan 119
ES Coding EXample < eveseeeaesesassesssnsas 150
ER Coding Example e sicsoenscasasoeseessnsss 1L
EM Coding EXample .ot viesissisiessesssse ey £33
RASP Coding EXample issevnessscsocossnsassave 108
OP Coding EXample <ccisssavessssnenssisnsosns 156
QUIP Coding EXAmMple ..sisecssssvseccsvessssass L7
SODA Coding EXamPle o acicie e eosesssssesess 233
TABGEN Coding Example ...cccccecvceccccacccacs 160
Summary of Supervisor Interfacescceceeee 175
Summary of Display Control Characters 178
Sample Problem Programcceesceeccccsccass 180
Sample Program - Message to Operator 183
COBOL Interface with GET, PUT, EXIT ...cc.cs.. 189
COBOL Data Divisionceveeeccccccceccacaes 196

viii CH-1

Table

EWN -

TABLES

NIPS Continuation CharacteristicsS c.c.eeeee
Storage Characteristicscecceceecsccccccss 163
Characteristics of Major Components 165
DDNAME CharacteriStiCS ececveceoccccscccscce

ix

e g ~—me—

Page

e o 1“8

oiois 169

CH=~1

IS

et

|

Lol daaal

ABSTRACT

////

»

//i4ﬁ%This.Téchnical Réport identifies and documents charac-
teristics of the many factors affecting NIPS performance which
should be considered when defining a NIPS file and coding NIPS
procedures. This is a supplement to and not a substitute for
the following NIPS user documentation:

- CSM UM 15B-60--,Vol I - Introduction to File Concepts
T _ _,.,Vol IT - File Structuring (FS)
Notumes 4'1129Vol III - File Maintenance (FM)
Vol IV - Retrieval and Sort Processor (RASP)
Vol V - Output Processor (OP)
Vol VI - Terminal Processing (TP)

Vol VII - Utility Support (UT)
Vol VIII - Job Preparation Manual

Vol IX - Error Codes
4CcSM GD 15A-68-- — % General Description; 2 o
TR 54A-70 — — % Installation of NIPS 360 FFS,
A
» CH-1
Lo = RO GRS i S g &

X. Percent of file updated
2. ISAM records in overflow
3. Change or add data

4, ISAM pad records

c. Retrieval
¥ Percent of file searched
2. ISAM records in overflow
d. Terminal Processing Requirements

e. File Backup Requirements

3.2k) File Generation

+

File generation normally is more efficient for a SAM file
than for an ISAM file. Each SAM file record can be written
in sequence without the ISAM processing overhead, such as
maintenance of cylinder and track indexes and generation
of pad records.

320k a2 File Update

The percent of the file updated is a major factor in
determining the relative efficiency of updating SAM and
IsAM files. If a relatively small portion of the file is
to be updated, ISAM generally will be more efficient than
SAM, since only those records changed or added are accessed.
As the percentage of the file updated increases, the relative
advantage of ISAM over SAM decreases, until the point is
reached where SAM processing becomes more efficient.

The number of records written to the overflow area
affects the efficiency of ISAM processing, and hence, its
efficiency when compared with SAM processing. Changes to
ISAM file fields will normally not cause overflow records,
since these changes replace existing data. The effect of
adding new data depends on the location of the data in
the file. If data is added between existing logical records
in the file, ISAM processing normally causes either the
new or existing logical records to be written to the overflow
area. If new records are added to the end of an ISAM file,
generation of overflow records depends on the record IDs

23 CH-1

of the pad records at the end of the file. Pad records are
generated at the end of an ISAM file with keys greater

than the highest record created, and these keys are incremented
based on the record IDs that were created. Only siv pad
records, blocked at 1000 bytes, will fit on a 2314 track.
Therefore, if all new records within the range of the high

and low keys to be placed on each pad record track do not

fit, some of the new records must be written to the overflow
area.

Occasionally, a programmer generates an ISAM file with
only a small portion (e.g., 10 percent) of the data records
in order to thoroughly review the results prior to adding
the remainder cf the data. Performing an ISAM update to
add the remaining data (e.g., 90 percent) to the file will
be very inefficient, and possibly terminate because of
lack of space. The probability of the new records being
forced to the overflow area is increased, since the algorithm
developing the records IDs of the pad records was based
on a small sampling (initial generation) of the total data
records. The run terminates if the data written to the
overflow area exceeds the overflow space allocated.

3.2.1.3 Retrieval

Two techniques exist in RASP and QUIP which can limit
the portion of the file which must be searched. They are:

a. LIMIT
b. SECONDARY INDEXING.

Both techniques permit the retrieval component to access

only a range of records or specific records based on record

IDs. Retrieval from an ISAM file will normally be more efficient
if LIMIT or secondary indexing can be used. These techniques
will be less effective for a SAM file, since each data record
must be read up through the upper limit of the LIMIT range,

or the highest record ID for secondary indexing candidate
records.

24 CH-1

\

When a batch output job is required to access an

entire NIPS file (no LIMIT or indexing is used), SAM file
processing is usually faster than ISAM. In one test, the
execution time required by RASP and OP to process an ISAM
file with overflow records was 2 hours and 17 minutes. After
the file was reorganized and the overflow records were placed
in the prime data area, the ISAM processing time was reduced
to 35 minutes. When a SAM version of the file was processed
by the same RASP and OP job steps, the execution time was
reduced to less than 13 minutes. A twelvefold decrease run
time between processing an unorganized ISAM file and a SAM
file was observed in this test. Similar results have been
shown in other tests. The processing of ISAM files con-
taining a significant number of records in the overflow

area will adversely affect the processing efficiency of

both RASP and QUIP. Thus, before starting any extensive

batch output cycle from an ISAM file, the file should be
reorganized.

24,1 CH-1

3:2.2 Inquiry Processing

Normally, response requirements are imposed on the
information retrieval operations against a file. The file
must be designed to satisfy these requirements.

Response requirements may take two forms--time require-
ments and format requirements. Stringent time requirements
may dictate an on-line data base, while less rigid requirements
may leave the designer free to choose. Similarly, complex
format requirements may dictate the use of the more general
and powerful output processor, while a simpler format could
be satisfied by a QUIP-published product. The requirement
for a complex report in a very short time could present
operational problems if special considerations are not made.

Two methods are available for processing inquiries
against NIPS data files: QUIP, the on-~line (or batch)
retrieval/output component, and RASP/OP, the more powerful
data retrieval and output tandem that only operates in
the batch mode. Although both perform similar functions,
they satisfy different requirements. OQUIP satisfies on-
line retrieval and output requirements and provides a quick
and simple batch capability. RASP/OP is a powerful capability
that permits more complex processing than does QUIP.

In the batch environment, the user may select which
method to use. QUIP employs interpretive processing techniques
and performs its function in a single job step. RASP/OP
is a two step operation and both components employ ge .erative
processing techniques. As a result QUIP often requi :s
less run time to accomplish a given task, especially w. en
a relatively small number of records is gueried. When
possible, both methods should be tried to determine which
is more efficient under the given conditions.

Both RASP and OP may be made more efficient through
the utilization of stored process elements and LIMIT/OMIT
logic. Stored process elements are those queries and RITs
that have been previously compiled and stored on an execution
library. They may be called in and executed immediately,
thus avoiding the otherwise routine and time-consuming step
of compilation every time they are required. Use of LIMIT/OMIT
logic permits the associated component to bypass those file
records that cannot meet requirements. If used wisely,
this capability can reduce the number of records processed.

CH-1

27

e ———————

Organization of data to make effective use of the SELECT

{ operator in RASP, can lead to significant savings in I/O

time, QDF data set space requirements, and subsequent processing
time.

3023 Secondary Indexing

Secondary indexing is a special processing capability
developed to increase processing efficiency for certain
types of files, and should be considered during file design.

Secondary indexing is a process of specifying additional
retrieval control fields for a file to enhance information
retrieval. In this case, however, uniqueness of the index
value is not a requirement, as many records probably have
the same index value. Thus, for information retrieval,

a file's primary index is the record control group while
other data fields may be specified as secondary, or alternate,
indexes. z

As a means of comparison, consider the RASP LIMIT state-
ment. Through its use, examination of records may be limited

by the contents of the high-order positions of the record
control field. If secondary indexing is utilized, examination
of records for retrieval may also be minimized, but based

on the content of the secondary index, which may be any

fixed field value in a fixed or periodic set, or any word in
any field in a fixed, periodic, or variable set (keyword index).

The benefit resulting from the correct use of secondary
indexes is that of dramatically reduced retrieval - run
time. For an ISAM data file with secondary indexing specified,
only those data records qualified by the secondary index
are accessed; these selected records are then subjected
to the complete logic of the query. The majority of the
file's records may be ignored.

For a SAM data file, secondary indexing is nct quite
as significant, since the file must be passed segientially
! simply to access the records qualified by the index. 1In
this environment, however, retrieval terminates when the
last qualifying record has been processed. Also, for large
multi-volume SAM files, secondary indexing will specify
which volumes are to be searched.

28 CH-1

Consider the example shown in Figure 7. The user has
specified that the field LOC is an index field. The Index
Data Set, TEST360X, contains all record IDs for each unique
value (CANNES, PARIS) of each index field (LOC). When the
user executes the query:

IF LOC EQ PARIS

the Index Processing phase of RASP or QUIP evaluates the query

and determines (from the index descriptor record in the FFT)

that LOC is an index field. The Index Processing phase determines
from the Index Data Set the record IDs (J00042, J00123, W0u4237,
W05689 and W06210) of each record in the file which has a LOC

value of PARIS. These records now become candidates for evaluation
by the retrieval component. In this example, all candidates,

in fact, satisfy the query. If, however, the query had been
specified:

IF LOC EQ PARIS AND MEQPT EQ HU-15.

not all candidates would satisfy the query. Since MEQPT

is not an index field, the retrieval component must evaluate
each of the candidate records (LOC EQ PARIS), and qualify
only those records which also have a MEQPT value of HU-15.

Secondary indexing is not without its expenses. Secondary
indexes must be defined, either during file structuring for
new files or by the index specification utility (UTNDXSPC)
for existing files. Space for these indexes must also be
reserved in the form of the Index Data Set. 1Index Data

Set space requirements may be computed using the following
algorithm:

3 For each indexed field, compute the number of

blocks (BR) required to store the unique values
from that field:

(VL+7) *NUV = BR
BLOCKSIZE

29 CH-1

User selects Index Fields

Index LOC.
Index Data Set contains:

Record ID's for each value of each Index Field
Evaluate only Candidate Records

Query: IF LOC EQ PARIS.

EST360 LocC
CANNES

. | J00014

| ! J00241
J00324

TEST360X —_—_—

PARIS

J00042
J00123
W04237
W05689
W06201

Figure 7. Index Data Set

30 CH=-1l

2 - For each indexed field, compute the number of blocks
(MR) required to store master indexes:
(VL+7) *BR = MR
BLOCKSIZE
% For each unique value in each field, compute the
number of blocks (CR) required to store the major
identifiers of the records in which the value
appears.)
NR*(RL+2) = CR
BLOCKSIZE
4. Compute the total block requirement by summing
the counts for items 1,’2, and 3.
BR + MR + CR = NBR
DEFINITIONS:
NUV - Number of Unique Values or Keywords
VL = Value Length or Average Keyword Length
RL - Major Record ID Length
NR - Number of Records (or Subset Records if the
Index is a Periodic Field/Group) in which a
unique value or keyword appears.
CR - Candidate Requirement
BR - Base Requirement
MR - Master Requirement
NBR - Number of Blocks Required (if Gen Mode,
Allocate 1.15 X NBR).
Effective use of this algorithm, however, requires that the

user have

e ————— s < o

an exceptional knowledge of the data values in his

30.1 CH-1

file. If the user is not able to accurately estimate his
data set space requirements, he can use the following procedure:

a. Allocate a large amount of space on a disk pack.

b. Generate the Index Data Set using File Maintenance
or the UTNDXSPC utility program. At the end of
this run the message:

¥¥3599** OF THE XXXXX RELATIVE BLOCKS ALLOCATED
TO THE INDEX DATA SET, YYYYY ARE USED.

will be printed. This message will tell the user the
exact number of blocks required for the Index Data Set.

c. Use the XTRDISK procedure for the UTNDXTFR utility
program to transfer the Index Data Set to tape.

d. Scratch the Index Data Set from the disk pack.

e. Use the XTRTAPE procedure for the UTNDXTFR utility
program to transfer the Index Data Set to disk.
Allocate more blocks for the Index Data Set than
the current requirement (indicated by the message
from file maintenance (FM) or UTNDXSPC) to allow
for Index Data set expansion. The Keyword Analysis
Utility (UTNDXKAN; XKA procedure) can be used to obtain
keyword data for use with this algorithm.

The Index Data Set will automatically be updated (index
maintenance) by FM each time the data file is updated, pro-
vided the XINDEX symbolic parameter references the Index
Data Set. The relative cost of index maintenance depends on
the frequency and volume of index field updates. Addition of
new records containing index fields will always require
updating of the Index Data Set. Change transactions affect
the Index Data Set only if the index fields are affected.

The Index Data Set is maintained as a BDAM file. As this
data set is updated, its organization gradually becomes less
efficient. It is necessary to periodically reorganize the
Index Data Set by using the UTNDXYFR utility program to trans-
fer from disk to tape and then back to disk. Each time the
Index Data Set is updated the number of blocks utilized is
printed. The gradual increase over the original requirement
gives an indication of the need for reorganization.

31 CH-1

Since the Index Data Set must be disk resident, the require-
ment for backup must be considered. A procedure similar to
the procedure recommended for ISAM file backup (subsection
3.2.1.5) could be implemented. By reorganizing (XTRDISK,
XTRTAPE) the Index Data Set after each update, the user not
only ensures optimum organization of the Index Data Set, but
also provides a backup Index Data Set. If the Index Data
Set is destroyed or (through user or operator error) gets out
of synchronization with the data file, the user must generate
his Index Data Set in order to continue using the secondary
indexing capabilities. To regenerate the Index Data Set, the
user must take the following steps:

a. Erase the existing Index Data Set from disk.

b. Execute the UTNDXSPC utility program. Use the GEN
option. The index specification utility program
uses the index descriptor records already present
in the data file FFT to generate a new Index Data Set.

Example:

// EXEC PGM=IEHPROGM

//DD1 UNIT=(2314) ,DISP=SHR,VOL=SER=123456
SCRATCH DSNAME=TEST360X,VOL=2314=123456

// EXEC XSP,XINDEX=TEST360,XDISP=NEW,

// XVOL='SER=123456"',ISAM=TEST360,

// VISAM='SER=123456',PARM=GEN

In order to ensure the integrity of the indexing capability,
it is mandatory that the Index Data Set correspond exactly
with its associated data file. Each time an indexed data
file is updated (by FM or SODA), a date of update is entered
into the File Format Table (FFT) and the same date added
to the Index Data Set. Whenever RASP or QUIP accesses
the data file, the file date is compared to the Index
Data Set date. These two dates must match in order for
index processing to be invoked. If the dates do not match,
the following message will be printed:

¥¥3500** INDEX USAGE NOT FEASIBLE.
SEARCHING THE ENTIRE FILE.

In this case, the retrieval will still be properly executed,
but indexing will not be used.

32 CH-1

E— - - S———

When FM or SODA accesses the data file for update,
the data file and Index Data Sets are also compared. If
they do not match, the following message will be printed:

**%3418*%*% INDEX DATA SLT NAME DOES NOT MATCH DATA
FILE

The data file will be satisfactorily updated, but the Index
Data Set will not be modified. Therefore, since the Index
Data Set is no longer compatible with the data file, index
processing will not be invoked in subsequent retrieval
runs. To use index processing again, it is necessary to
scratch and regenerate the Index Data Set.

If the user (intentionally or inadvertently) updates
his data set, but does not include the indexing parameter
(e.g., XINDEX=TEST360) on his FM EXEC card, the data file
will be updated, but the Index Data Set will no longer
be valid. Omission of the indexing parameter from a RASP
or QUIP run against an indexed file, causes the retrieval
component to determine that indexing is not feasible, but
the retrieval will be satisfactorily executed.

When using Keyword Indexing, no safeguards are provided
when a user changes keyword tables, because the tables are
independent of specific data files. One stop word table may
be specified for a number of fields in several data files.
When a keyword table is changed, the Index Data Sets for all
fields associated with the table no longer correspond with
their associated data files. The affected indexes must be
recreated by deletion and addition or the affected Index Data
Sets must be scratched and regenerated. During the period
when the table has been changed, but the Index Data Sets
have not been brought up to date, erroneous results will be
obtained from all NIPS functions.

One method for controlling data file access during table
maintenance is to rename the table just before it is updated.
After the table is updated, delete all affected indexes and
add them with the new table name. In the interval, all
attempts to access the indexed fields will result in "table
missing" errors. If this method is used, remember that each
page of the table must be renamed.

33 CH-1

Advantages of using secondary indexing also depends
on several factors.

a. Percent of file retrieved
b. Number of unique values
(o Frequency of retrievals
d. Number of index clauses

e. Frequency of index value change

£ Necessity for querying full text data in variable

fields and sets.

Indexing is relatively ineffective if a large percentage
of the file is retrieved. If a large portion of the file
is to be retrieved it is more effective to bypass index
processing (PARM='INDEX=NO') and sequentially access the
records, rather than access them as candidate records one
record at a time. The INDEX=NO option also bypasses the
index processing overhead cost.

The more unique values a field has, the greater its
potential effectiveness as an index field for retrieval,
though the maintenance costs can be expected to increase.
For an indexed field the length of the list of records
containing each unique value, relative to the number of
records in the file, affects the efficiency of using that
field. 1If the list for each value is of equal length,
the ideal number of unique values is equal to the square
root of the number of records in the file.

For example, assume that LOC and CNTRY are fixed fields
in a 1000-record TEST360 file, where there are 100 unique
values of LOC and 20 unique values of CNTRY. Conditioning
on LOC as an index field would qualify an average of 10
candidate records, while conditioning on CNTRY as an index
field would qualify an average of 50 candidate records.

If indexed retrievals are infrequently utilized, the
costs of index maintenance may be more than the savings
accrued by retrieval.

Generally, it is desirable to define index fields
and design queries to produce an explicit candidate list
which causes retrieval evaluation of a relatively small
number of records. Defining index fields to be used in
multiple clauses connected by an AND can define a candidate

34 CH-1

Leand o e

list where every record satisfies the query. Excessive
index processing overhead can be generated, however, if
there is a broad overlapping of candidate records qualified
by each index clause. For example:

IF LOC EQ PARIS AND CNTRY EQ FRANCE.

Assuming there are 10 records in PARIS and 50 records

in FRANCE, index processing would generate a list of record
IDs satisfying the LOC EQ PARIS clause and a second list

of the record IDs satisfying the CNTRY EQ FRANCE clause.

These two lists would then be merged to form the single
candidate list of 10 records satisfying both clauses. This
candidate list would then be evaluated by the retrieval
component. It is clear that there is redundancy in index
processing for the evaluation of these two clauses, since
every PARIS record is in FRANCE. Even if there is a possibility
of one or more units in PARIS in some other country, exclusion
of a CNTRY as an index field would reduce the index processing
overhead cost and probably improve overall query response.

In the above query, if CNTRY were not an index field, the
candidate list would contain all units in PARIS (but not
necessarily FRANCE). The retrieval component would then
qualify only those records in PARIS FRANCE. If both fields
are indexed, the overhead associated with CNTRY can be

avoided by use of the FURTHER statement. Example:

IF LOC EQ PARIS.
FURTHER CNTRY EQ FRANCE.

FURTHER statement clauses are not processed by Secondary
Indexing.

Effective use of the secondary indexing capability
requires a thorough knowledge of data values and file utilization.
Ideally, index fields would have low update activity, but
frequent retrieval utilization.

To aid in selecting index fields, the user should
utilize the file utilization statistics capability (see
subsection 3.5). File utilization statistics inform the
user of the most frequently referenced fields in each of
FM, RASP, QUIP and OP. Using these statistics, the user
can select for indexing those fields most frequently used
by RASP and least frequently updated while avoiding data
fields rarely used for retrieval but frequently updated.

35 CH-1

e e e e e e

The user should also employ the Keyword Analysis Utility
(UTNDXKAN) to determine if keyword indexing would be practical.
One of its functions is to list all words in a field with
frequency counts or major record identifiers.

#3.2.4 Keyword Indexing

Keyword Indexing is a text-~retrieval capability that
provides a method by which the NIPS user can access and retrieve
records based upon the contents of variable-length or text
data fields. The Keyword Indexing capability is described
in section 3.7 of the NIPS User Documentation, Volume I -
Introduction to File Concepts.

Efficient use of Keyword Indexing requires an evaluation
of the user application and the intelligent selection among
a number of user options. The criteria for evaluating these
options is discussed in the following paragraphs.

#3.2.4.1 Scan Subroutine

A scan routine defines word boundaries (i.e., determines
the limits of words by identifying literals and text words)
in keyword indexed fields during execution of FM, SODA, and
Index Specification. The user can use the system provided
scan routine, or can develop a special purpose scan subroutine
for his application.

The System Scan subroutine defines the following word
types:

a. Literal word - delimited by a single guotation
mark character

b. Alphanumeric - letters and numbers

C. Decimal notation - numbers with embedded commas
and a single period

d. Symbols and abbreviations - alphanumeric words
with imbedded periods and hyphens (optional).

35.1 CH-1

ik,

In addition, it recognizes a hyphen optionally as a
textual character, as part of a symbolic word, or as a
connector between two parts of a word that was split in the
process of creating data file update transaction records.

If the System Scan Subroutine does not meet a user's
needs, he can write one of his own. His subroutine must
conform to the following interface conventions.

A scan subroutine is called conventionally by the Scan
Processor (IXFMKSC) :

register 15 scan entry address
register 14 return address

register 13 - save area address
register 1 - parameter list address.

The parameter list is shown in figure 7.1. The first time

the subroutine is called, bits in the return code byte indicate
end-of-field (new field to be processed). The scan subroutine
controls the return code. It must clear the code when it
begins to process a field and must set the end-of-field code
when the field has been processed. The Scan Processor tests
the code to determine when a new field should be addressed;
only then will it update the parameter list. The scan sub-
routine must, before it returns, either move a one-byte word
length and a maximum 30-byte word to the area addressed by a
parameter, or it must set the no-word and end-of-field return
code. When a literal word is returned it must flag the word
length byte.

The keyword index hyphen option is available as a scan
flag. The parameter binary equivalents to the index option
are:

- DROP

RETAIN
SEPARATE

TEXT (default)

FwWwN -
ki

The option words can obtain any meaning desired by the user.

It is suggested that the user employ the Keyword Analysis
Utility (UTNDXKAN) to debug this scan subroutine. He must
store the routine in a user library. Then he can specify
its name in a control statement and limit the number of NIPS
records processed during the test.

352 CH-1

&

- address of field HOP
- scan limit address (field LOP)
- address of word holder area
area format:
CL1 - word length. Bit 0 is 1 if literal.
CL30 - word, left justified, no padding.
CL1 - hyphen option; binary.
1l - DROP
2 - RETAIN
3 -~ SEPARATE
4 - TEXT (default)
CL1 - return code
bits 0-3: not used by scan
bit 4: no-word-found if 1
bit 5: end-of-field if 1
bits 6-7: not used by scan

o e B |

Figure 7.1l. Scan Subroutine Parameter List

3543 Cli-1

#3.2.4.2 Stopword lapbles

A stopword table causes the elimination of words which
match the table during index maintenance. 1Its function is
to reduce the volume of data to be processed.

The decision for creating stopword tables should be based
entirely upon volume. All occurrences of all words from
keyword indexed fields are processed twice. First, they are
blocked in index transaction records for passage to the OS
sort. The space required is roughly equivalent to that
required to store them in the data file. Then they are
sorted (except SODA). Each word is stored in a fixed length
field (31 bytes) in a sort record. A stopword table should
probably be created when the volume exceeds 50,000 words,
although this figure will vary with hardware capacity.

The system stopword table is intended for use with full
text data that consists of grammatically correct sentences.
It will probably have little value with data composed only of

keywords or phrases, but such fields normally will not require
a stopword table.

Note that the suffixed word function is not associated
with stop words. To eliminate the suffixed forms of a word,
each suffixed form must be defined as a stop word.

#3.2.4.3 Dictionary Tables

A dictionary table causes the substitution of the root
form of a word for all occurrences of suffixed forms of that
word and the substitution of one word for all words in a
group defined to be synonymous.

The decision for creating a dictionary should be based
on data content. If no dictionary is specified for a field,
each unique word which does not match a stopword table is
stored in the Index Data Set with the major identifiers from
the NIPS records in which it appears. Under this condition,
suffixed forms of a word are not recognized as such; each
suffixed form is stored as a unique value. A dictionary is
required if all forms of a word are to be stored as one value
in the Index Data Set. The same reasoning applies to words

which are synonymous or which the user wishes to treat as
equivalent.

The same logic also applies to retrieval. Even if data
file information does not include suffixed words or synonyns,

the presence of a dictionary permits a user to include suffixed
forms or synonyms in retrieval statements.

A dictionary can be employed to perform the function
of a stopword table - the elimination of words which will
never be used as retrieval terms. Words which match a stopword
table are excluded; words which do not match a dictionary are
excluded. However, the use of a dictionary solely for word
exclusion is inefficient since no processing time or space is
saved. Words are matched with the stopword table immediately
after they are recovered by the Scan subroutine. Words are
matched with the dictionary during the creation or update of
the Index Data Set. In addition, each retrieval statement
keyword term is matched with the dictionary.

#3.2.4.4 Data File Creation and Update

Data content, often tolerable in any form when used only
for display, becomes critical when the same data is queried.
Normal data validation procedures should be followed. 1In
addition, the following considerations are pertinent to key-
word indexing.

If raw data is coded before it is converted to machine
readable form, keyword indexing permits the codes to take the
form of several words or phrases stored in a fixed or variable
length field. Although requiring more space than symbolic
codes, this form simplifies error checking and eliminates the
need for display conversion. A glossary of coding terms
applied here would ensure consistency and probably eliminate
the necessity for keyword tables; in effect, the coder matches
the keyword dictionary before the data enters the system.

When FM update transactions are created, a procedure
should be followed which prevents word splitting. If a word
is split between transaction records, the System Scan sub-
routine will treat each part as a separate word. If a word
is split within a transaction record, the hyphen DROP option
may be used to recover it. For example, if transaction
records are created from MTST tapes and several lines are
combined into one record, a word may be split beétween lines
and the parts may be separated by blank characters. If the
first part of the split word is immediately followed by a
hyphen (common continuation) and the DROP option is specified,
the Scan subroutine will ignore the hyphen and any following
blanks and recover the two parts as one word. The choice of
this option prevents the use of the hyphen in symbolic notation,
however.

35.5 CH-1

Care should also be exercised in the use of the quotation
mark character (quote). A single quote is a literal delimiter;
two single quotes separated by any other character are required
to define the literal word limits. (Two consecutive quote
characters are ignored.) If only one quote is present in a
field, the System Scan subroutine assumes that a literal word
has been split. However, unlike its treatment of split non-
literal words, it disregards all characters from the single
quote to the end of the field. If a literal word is split
between two records, the part of the literal in the first
record will be ignored. The second part of the literal will
be processed as a non-literal, and all data from the delimiting
quote in the second record to the end of the field (which
probably includes non-literal words) will be disregarded. 1In
other words, an even number of quotes must be present or
erroneous scanning will result.

Spelling errors can usually be corrected more easily in
transaction records than in data files. Therefore it is
recommended that all transactions be displayed and proofread
before data file update.

It is also recommended that the MVR operator (POOL) rather
than MVF be used in logic statements that create and update
variable sets. MVF reblocks transaction data into field
length subset records with a high percentage of word splitting;
each subset is scanned as an independent field. MVR creates
a subset record for each transaction record; transaction data
is not reblocked. MVR may also be used to update variable
fields; processing is identical to that of MVF. The NFL MOVE
(variable field) and ATTACH (variable set) both expand into MVR
operators.

#3.2.4.5 Data File Analysis

The objectives of analysis are to determine if keyword
indexing of selected fields is feasible, to identify misspelled
and split words in prospective fields, and to establish the
contents of keyword tables if any are required. They are
accomplished by examining word lists produced by the Keyword
Analysis utility (UTNDXKAN). The following steps are
recommended:

-~ Feasibility: list all words in selected fields
-- Error correction

-~ Create stopword tables

-~ Create dictionaries

35.6 CH-1

o Feasibility

For each selected field, prepare a UTNDXKAN statement;
specify the field name and bypass for both tables. If the
estimated volume of words from all fields will exceed 150,000,
an initial run with a file statement that limits processing to
100 NIPS records may be advisable. Use the 0OS sort delete and
maximum counts to estimate total volume and adjust the UTNDXKAN
sort space parameter accordingly. Remove the file statement
before making the analysis run.

The judgment as to whether or not it is feasible to index
a field is completely subjective. It is a matter of weighing
retrieval requirements against data content. This initial
listing shows a NIPS record frequency count with each word
which will probably be most helpful in analyzing data consisting
of full sentences such as abstracts.

o Error Correction

It should be relatively easy to spot broken and misspelled
words. If there are relatively few such words they can be
ignored, i.e., eliminated by stopword table entries, or
corrected by dictionary synonym entries. If the data is in
rather bad shape, it will probably pay to correct the data file
before continuing with the analysis procedure. As an aid in
the correction process, add the record identifier option to
the field statements of fields with poor data and execute
UTNDXKAN to get a list of words with NIPS major record
identifiers and occurrence counts. It is possible that a
relatively few NIPS records contain all the errors.

o Create Stopword Tables

A stopword table will probably not be needed for fields
that contain only coded words or phrases unless it is used to
eliminate erroneous words. It would be better to correct
words with a dictionary than to eliminate them. However, if
split words are corrected, one part of the split must be
retained for correction while the other part must be deleted.

For full-sentence data, word frequency counts can be
used as a guide to the selection of stop words; words which
appear in more than 40 percent of the data file records are
probably not worth retaining.

35.7 CH-1

If several or all fields contain similar data it would be
advisable to create one stopword table for all of them to
reduce overhead. In that case, it might be helpful to execute
UTNDXKAN to obtain one list of words from all fields by using
a file statement that specifies the merge option.

Punch the stop words into cards. If a user library does
not exist, create one; the Dictionary Maintenance utility (XKM)
procedure does not include parameters for library creation.

Prepare a UTNDXKMD table statement and a display statement
for each stopword table to be created. All words must fit one
table page. About 115 words can be stored on a 1lK page; specify
page size according to word volume.

After UTNDXKMD is executed to create the stop tables,
revise the UTNDXKMD field statements; replace the stop bypass
parameters with the proper table names, then execute JTNDXKMD
to get a word list with stop words flagged. Use this list to
validate stopword table content.

o0 Create Dicticnaries

If stopword tables were created, add a parameter to each
UTNDXKMD field statement to bypass stopword display and execute
UTNDXKMD to get a list of non-stopwords only. Examine the list
to determine if a dictionary is required. A dictionary is
probably required if error correction is necessary, if suffixed
words appear in the data file, or if synonyms are desired.

One approach to compiling a dictionary is as follows.
First, examine the list produced by UTNDXKAN for suffixed words.
Cross off the suffixed words and write the root form of the word
next to them on the listing if it does not appear in the data
file. If the word ending changes when it is suffixed, include
suffix notation with the root form of the word. Next, make a
list of all synonyms and check them off the UTNDXKAN listing.

Do not include suffix notation in this list. Do include error
correction synonyms. Note that a word included in the diction-
ary need not appear in the data file. All occurrences of a
word may be incorrectly spelled, or a preferred retrieval term
may not appear at all. The correct or preferred word can and
should be included in the cdictionary. Next, make a list of
suffixes -- all root words on the UTNDXKAN listing with suffix
notation. The same word may appear on both the list of suffixes
and the list of synonyms. Check off all words with suffix
notation on the UTNDXKAN listing. All words on the UTNDXKAN
listing which were not checked off constitute a list of keywords
(neither suffixed nor synonyms).

Generally, it will not pay to combine terms from several
fields into one dictionary. The saving in overhead during
retrieval and maintenance is insignificant. On the contrary,
large dictionaries mean many pages, degrading rather than
enhancing retrieval time.

After dictionary terms have been selected, prepare four
UTNDXKMD table statements for each dictionary to be created
-- to add keywords, suffixes, and synonyms, and to display
the created table. After executing UTNDXKMD, replace the
dictionary bypass parameters in all UTNDXKAN field statements
with the names of the proper dictionaries and execute UTNDXKAN.
Check the resulting list for proper word identification and
substitution.

#3.2.4.6 Indexing the Data File

When executing the Index Specification utility, only
keyword table page sizes and word volume require special
consideration. If the sum of table page sizes exceeds 10K, the
execute region should be increased by the excess for more
efficient processing. If any page exceeds 10K, the region must
be increased.

Computing the number of blocks to be allocated to the index
data set is tedious at best. As an alternative to the algorithm
presented in section 3.2.3, an approximate count can be obtained
by counting the number of keywords and basewords on the final
analysis UTNDXKAN listing. By observation, obtain a rough
approximate average frequency count for all keywords, base-
words, and convert words. Compute the block allocation from
the following algorithm. Ignore the remainder in all divisions.

(1) Compute words per block.

WPB = BLOCK SIZE
¥ L ARWE i
(2) Compute keys per block.

KPB = BLOCK SIZE
KEY LENGTH

35.9 CH-1

(3) Compute blocks required for words.

BVL = NKB + 1
WPB

(4) Compute blocks required for a master index; if BVL
is less than WPB, MIL=0.

MIL = BVL + 1
WPB

(5) Compute blocks required for keys.
CDL = (AVE/KPB + 1) * NKB
(6) Compute minimum blocks required.

TOTAL = 2 + BVL + MIL + CDL

35.10

CH-1

#3.2.4.7 Maintenance Considerations

When a data file is updated, its associated Index Data
Set is automatically updated also. Keyword indexing affects
this function only insofar as volume is concerned. Each key-
word field contains multiple values (words); it will obviously
take more time to update a keyword field than it will to update
a secondary index field. In addition, Index Data Set reorganiza-
tion will probably be required more frequently.

When a keyword table is updated, Index Data Sets associated
with it are not automatically updated. Only the user knows
which data files are associated with the table so it becomes
his responsibility to maintain Index Data Sets when he changes
a keyword table. The tool for accomplishing this function is
the Index Specification utility and the method is to delete
and add the index for all fields indexed with the updated
table. The utility treats the deletion and addition of an
index with identical parameters in the same run as a NO-OPERATION
so indexes must be deleted in one run and added in a second run.
An alternative is to rename the table when it is updated. Then
the new table name is a new parameter when the index is added;
deletion and addition can be accomplished in the same run. This
method has the advantage of short circuiting indexes for the
revised table which the user neglects to update; the old table
name in these indexes will not be found. If the latter method
is used, remember to rename all pages of the table. Table names
are padded with EBCDIC zeroes to seven bytes and the eighth
byte is used to number the pages. Page seqguence is a blank,

A through Z, then EBCDIC zero through nine. Each page is
stored as a member in the user's library.

Note that only changes that affect an Index Data Set require
user action. If words which do not appear in any form in a
data file are deleted or added to a table, no action is
necessary. Therefore, tables should be created or updated
before data files are created or updated.

3.2.5 File Segmentation.

File segmentation permits a large SAM file to be sub-
divided into smaller subfiles, or segments. Each segment is

35.11 CH-1

treated much as an independent file, but all segments may be
collectively processed as one main file, except in FM processing.

A segmented file must be subdivided by the contents of
the high-order positions of the record control group. Each
segment is defined by a range of values in the segment control
field. File maintenance may be performed on only a single
segment at a time, but retrieval and output operations may be
performed on a single segment or on all segments through the
use of the JCL data set concatenation capabilities.

File segmentation is a capability ideally suited to the
maintenance of chronological files or other data files where
data records are continually appended to the end of the data
set. Segmentation minimizes the size of the data set to be
processed in accessing any specific range of records.

3.3 File Field Specification

The user must consider a number of factors when defining
file fields at file structuring time.

3.3.1 Control Field Considerations

The specification of file control fields is a task that
is always performed but is frequently accomplished without
proper analysis. Control fields to be specified are the
record control group and subset control fields, if any, for
each defined periodic set.

Other than limitations on length, the record control
group must satisfy only one other requirement: to uniquely
define each record in the file. When possible however, the
record control group should be designed to aid in efficient
operation of the file. The following steps should be
considered in selecting the record control group:

a. Minimize the length of the control group.
It must be included in every transaction
and index (both ISAM indexes and secondary
indexes) . Extra characters can be costly.

36 CH-1

field being printed. Only four one-byte fields
can be LISTed on a single line of the 2260 scope
if the user has defined 1l5-byte column labels.

If no label is defined in the FFT, the field names
should be as descriptive as possible, since they
will be used as column labels by the QUIP LIST
statement.

e. Direct Subset updating can be a very efficient
method of updating a NIPS file. If direct subset
updating is to be used in FM, however, a unique
subset control field must be defined in the FFT.

3.4 Size Considerations

In designing and organizing a data file, the file
designer should consider the importance of size in all
aspects of the file. There are four major areas where
size is important: total size of the file, data record
size, set size, and size of the individual fields and groups.

3.4.1 File Size

File size becomes a problem whenever the file, because
of its size, does not satisfy the response requirements
imposed on it. Usually the failure is due to the number
of file data records. This leads to extended run time
for updating the file and producing the.standard products.

Additional file size problems can arise as a result
of the record size. Approaches to this problem are discussed
in subsection 3.4.2. Also, extended run times can result
from complex or inefficient employment of NIPS components
(refer to Section 4, Language Characteristics) or, if the
file is ISAM, from cylinder overflow from the prime area.

To reduce the number of records in a file, the first
step is the elimination of all totally unnecessary records.
Proper data record purge procedures should be defined and
implemented as an integral part of the file. A logical
purge may be used where records are automatically eliminated
as a result of some data field value; e.g., a date, specific
manual designation by a user, or some other external source,
but procedures must be established.

Data records may be eliminated from a master file
and retained on a second file as a history capability.
The historical file may duplicate the format of the main
file or it may utilize a different File Format Table.

Use of the purge and historical capabilities concurrently
is also reasonable. Records would likely be purged from
the main file as they are added to the history file. A
possible history file procedure is shown in Figure 8. Two
RASP queries are run against the master file defining purge
and history specifications, respectively. The NIPS utility
program UTQRTQDF is run against each RASP answer set to
produce a purge file and a history file.

Initial file design can also forestall file size problems
by concise definition of several smaller files rather than
one large file. Utilization of NIPS capabilities such
as IFO and merged file output could be used to bring data
from the various files back together.

The file segmentation capability can be utilized to
present smaller files to the file maintenance and retrieval/
output functions. Although sementation does not alter the
size of a file, it permits the file to be processed as a
series of subfiles, called segments. Refer to subsection
3.2.8.

File compression and compaction can also be used to
reduce the physical size of the file. Compression and com-
paction provide a means of reducing intermediate storage
requirements for data without altering the integrity of the
data. This data reduction scheme is particularly suited to
data files that contain strings of identical characters or a
large amount of alphabetic data. The record control bytes of
a record are not compressed or compacted.

A string of four or more identical characters is com-
pressed by translating it to two bytes. The first byte is a
control byte which indicates that compression has been
applied and gives a count of the number of identical con-
secutive bytes that were in the original string. The second
byte is identical to those in the original string.

A string of alphabetic characters is compacted by trans-
lating it to a control byte followed by a string of coded
characters. The control byte indicates that compaction has
been applied and gives a count of the coded characters. Each

40 CH~1

i

®

PURGE
QUERY

RASP

ANSWER
SET
(PURGE)

ANSWER

SET
(HISTORY)

UTQRTQDF

FIGURE 8, HISTORY FILE PROCEDURE

41

-

HISTORY
QUERY

¢

oLD
HISTORY
FILE

FM

UPDATED

HISTORY

CH=1

coded character represents a combination of two adjacent
alphabetic characters.

Compression or compaction can be applied to a data file
by specifying COMPRESS or COMPACT respectively as a value for
the PARM parameter on the EXEC statement for the SAM to ISAM

and ISAM to SAM utilities. The combination of both compression

and compaction can be applied to a data file by specifying
both keywords as values for the PARM parameter. When both
are specified, compression is applied to a record first and
those characters that cannot be compressed are processed for
compaction.

The compression and/or compaction process can be
reversed by specifying EXPAND as a value for PARM parameter
for either utility.

The potential effectiveness of compression/compaction can
be determined by executing the program NIPSDUMP with the PARM=
CC option. This program provides statistics on file size,
number and total size of each NIPS record type, and file size
after compression compaction. No changes are made to the data
storage mode when using PARM=CC option of the NIPSDUMP program.
The following example shows the coding required to execute
NIPSDUMP.

// EXEC PGM=NIPSDUMP,PARM=CC

// STEPLIB DD DSN=FFS.JOBLIB,DISP=SHR

// FILE DD DSN=TESTER,UNIT=2314,DISP=SHR
// SYSPRINT DD SYSOUT=A

//SYSIN DD *

/t

The following example shows the type of output produced by
NIPSDUMP when the PARM=CC option is used.

000348019 R-RECORDS IN FILE SIZE=0028141560 BYTES
000348019 RECORDS COMPRESSED SIZE=0017834166 BYTES
000347976 RECORDS COMPACTED SIZE=0022259687 BYTES
000348019 RECORDS BOTH SIZE=0015835009 BYTES

FOR COMPRESSION
FILE SIZE REDUCED 36,.52 PERCENT
R~RECORD (DATA PART ONLY) REDUCTION=44.96 PERCENT

FOR COMPACTION

FILE SIZE REDUCED 20.84 PERCENT
R-RECORD (DATA PART ONLY) REDUCTION=25.66 PERCENT

41.2

1 ‘7 |

| "1“ PAGE| BLANK-NOT F1
e . .

T

FOR BOTH
FILE SIZE REDUCED 43.60 PERCENT
R-RECORD (DATA PART ONLY) REDUCTION=53.69 PERCENT

When processing compressed files, the record must be
expanded when being read and compressed when being written.
Very little processing is required to expand a record; file
compresssion is a much more sophisticated routine. Therefore,
reading a compressed file causes a very small increase in CPU
time, writing a compressed record causes a larger increase in
CPU utilization.

Since FM must both read and write updated records, the
increase in CPU utilization will be greater for FM than for
RASP, OP (source direct), and QUIP (source direct). During

a SAM file update, every record must be read and rewritten.
For an ISAM update, only the updated records will be
processed. Therefore, file compression will have a relatively
small impact on CPU utilization for ISAM file updates.

The number of factors affecting total processing

efficiency of compressed files, requires that each application
be reviewed independently to determine compression effectiveness
for that application.

3.4.2 Record Size

Theoretically, a NIPS data record, because of its
organization as a series of logical records,may be of any size.
Certain NIPS components, however, must limit the size of the
data record that can be retained for processing at one time.
This limit, called the "process block size," is variable,
depending on the component and the option of the user (see
Introduction to File Concepts, "Data Record Organization
Summary", CSM UM 15-7F). Process block size limitaticns are
discussed in appendix C of this document.

Because of the process block limitations and because
large records greatly increase file storage requirements,
record size often becomes a problem.

Data record size may be reduced by data condensation
tech iques such as subroutine or table conversion. However,
the ' ser must weigh the advantages and costs of data conversion.
Some of the factors to be considered are:

41.3 CH-1

.

a. Effort required to develop, maintain, and use
conversion tables or subroutines. Whether or not
conversion techniques are standardized and
meaningful to all users.

b. Full Size-~Small files probably do not merit the
effort required to implement conversion techniques.

c. Reduction attained--A reduction from 20 bytes to
two bytes is more significant than from three
bytes to one byte.

d. Frequency of occurrence--Converting a record control
group field is more effective than converting a
fixed set field, because the record control group
is included in each logical record.

e. Conversion time--If the transaction data exists in
coded form, moving it into the file in that form
eliminates FM conversion. If the transaction is
not coded, FM conversion would be required to store
the data in coded form.

£. Accuracy for retrievals--Spelling and keypunch
errors may be reduced if a code can be specified
in lieu of a 20- or 30-character name, which may
be input in various formats.

3.4.3 Set Size

The set is the highest NIPS structure with a size limita-
tion. The maximum size for the fixed set or, for a subset
of any periodic set, is 1000 bytes or 100 defined fields and
groups. The format of the NIPS record is defined in Appendix A
of NIPS User's Manual, Volume I - Introduction to File Concepts.

Fixed data is the simplest data to process in NIPS. Thus,
it is advantageous to store all nonrepetitive data in the fixed
set., If, however, the set size limitations are exceeded, fixed
data could be stored in a periodic set. If this is done, it is
best to define as periodic those data items most likely to be
blank. When they are blank, that storage space will not be
required. This technique could be employed to save space even
if the original set size were not exceeded.

42 CH-1

has shown that processing queries serially against a single
file is significantly faster than attempting parallel queries.

Multiple data sets on the same pack also cause device
contention if both data sets are queried at the same time.
Ideally, each NIPS file in the TP environment should be on a
separate disk pack. This, however, is impractical, since the
number of available disk drives would quickly limit the number
of files that could be mounted at any time.

It is possible for a NIPS file library to contend with
its associated data file if resident on the same pack. This
should not be a significant problem unless lack of free core
requires frequent rolling of tables and subroutines. If the
tables and subroutines can remain resident throughout the
query, then library access and resulting contention should be
minimal.

An Index Data Set does not compete with its associated
file when mounted on the same pack. Accesses to the Index
Data Set and to the master file are performed serially by
QUIP. Processing of the Index Data Set is completed prlor to
reading the data records from the master file.

Online file access can be improved by allocating the

file index and prime data area to separate devices. The prime
data area can also be allocated to several separate packs.
These techniques reduce the contention caused when multiple
terminals access the same file concurrently.

5.1.3 Terminal Versus Batch Applications

In many applications, the user has the choice of running
in the batch or TP mode. Wherever possible, terminal queries
should be limited to relatively short, precise portions of the
data base. Sorting of output should be limited.

Stored queries that are run on a regular basis and have
output dumped to the printer should be initiated as batch jobs
by the remote job entry (RJE) feature of EDIT. Relieving TP
of a heavy load of production type TP queries improves the TP
responsiveness to ad-hoc queries.

5.1.4 Restricting File Search

Two NIPS capabilities can be used to improve TP response.
These are LIMIT and secondary indexing.

LIMIT restricts search of the file to records that fall
within the range of the LIMIT statement. If the upper range
of the LIMIT includes the last record in the file, ISAM reads
all pad records (if present) until it reaches the end-of-file.
When using the LIMIT statement in this manner, it is important
to use the NOPAD option when creating the file.

129 CH-1

Secondary indexing restricts search of the file to those
records that can possibly satisfy the query, based on evalu-
ation of clauses containing fields specified as index fields.
The secondary indexing capability is discussed in section 3 of
this document.

5.2 Terminal Operating Techniques

This subsection discusses a number of techniques which
can be employed by the terminal user to improve overall TP
operation or to circumvent potential user errors.
5.2.1 General TP Procedures

The LOGON, LOGOFF requirements may vary by installation.
As a minimum, the user should include his name when logging
on or off. Also, any problems encountered during the terminal
session should be recorded using the REMARKS request. For
example:

REMARKS UNIT BUSY 1300=1320-JONES.

Information from the LOGON, LOGOF;T‘;;S\ﬁEMAﬂKS\gequests is

recorded on the TP Log (DDNAME=STATRECS). This information
assists systems programmers in isolating any problems that
might occur.

As soon as the user is logged on, he should send a message
to the operator requesting mounting of the desired pack(s).
For example:

PLEASE MOUNT PACK 123456-JONES. —M
Similarly, he should tell the operator when he has finishead.

I'M FINISHED WITH PACK 123456-JONES. —M

The user should verify that his data base is on the desired
pack prior to starting the terminal session. The following
sequence has frequently caused deletion of a production data
base from its pack:

a. UTBLDSAM to create tape file

b. Delete file from disk pack

(~ 2 Perform production update on tape file

d. Restore new file to disk using UTBLDISM.

130 CH-1

e - o B O N N .

g

e.

f'

Add Basic JCL from Source Library

/GET MEM=JCL1l LIB=TEST360L
/LIST T1E
EOM RECEIVED
EDIT PROCESS COMPLETED. START CONVERSATION.

N

RECORDS 0000 THRU END OF EDIT WORK FILE
//TP999901 JOB (555,1234,12,U,0000) ,JONES6633,

// CLASS=C,REGION=100K

/*VOLUMES ND1234

/*SCHEDULE TAPE9=0 TAPE7=0 DISK=1

//ABC EXEC XQUIPSD,ISAM=TEST360,VISAM='SER=ND1234,
// LIB=TEST360,VLIB="'SER=ND1234"',CL=U,CL1=U,CL2=U
//SYSIN DD *

FILE TEST360. CLASS UNCLASSIFIED

LIMIT SERV = NAVY.

LIST UIC PERS MEQPT

Tailor JCL for this run

/C 1 #*9999#%0205*
/RESEQ
/LME
EOM RECEIVED
EDIT PROCESS COMPLETED. START CONVERSATION.

N

RECORDS 0000 THRU END OF EDIT WORK FILE
//TP020501 JOB (555,1234,12,U,0000) ,JONES6633,

// CLASS=C,REGION=100K

/*VOLUMES ND1234

/*SCHEDULE TAPE9=0 TAPL7=0 DISK=1

//ABC EXEC XQUIPSD,ISAM=TEST360,VISAM='SER=ND1234"',
// LIB-TEST360,VLIB='SER=ND1234',CL=U,CL1=U,CL2=U
//SYSIN DD *

FILE TEST360. CLASS UNCLASSIFIED

LIMIT SERV = NAVY.

LIST UIC PERS MEQPT

Submit Job for Batch Execution

/SUBMIT TE

133 CH=d

e — —

5.2.5 Access to EMQ and OMQ

The /LIST operator in EDIT places data on the OMQ, if no
EDIT errors are encountered. EDIT advisory messages are placed
on the Edit Message Queue (EMQ). After successful execution
of LIST, the user receives the START CONVERSATION message.
At this point, he can communicate with either the OMQ or the
EMQ. He selects the OMQ by using the paging command N. He
selects the EMQ by using the paging command E. All subsequent
paging operations will be applied to the queue selected. To
review the other queue, the user must scratch or hold the gqueue
he is working with and execute the PAGE program (M P). He
may then access the alternate queue.

#5.2.6 Record ID Retrieval

SODA should be considered as a retrieval and output tool
for terminal applications. If the record ID of the requested
record is known, and a specific output format is required,

SODA can be used to display required data from a single record.
SODA provides extremely fast response because of two factors:

a. The record ID of the desired record is
known and no file search is needed.

b. SODA executes a precompiled logic
state. ent and requires no translation
phase. A QUIP query must be translated
before it is executed.

The record ID and logic statement ID entered at the
terminal is processed by a user-written logic statement
which formats the output display.

#5.2.7 VIEW Program

Many standard batch and online output requests can be
anticipated following the file update. The production of
predefined reports can be accomplished as part of the
regular file update cycle, and the outputs can be 'saved on
distribution data sets.

Once the output reports are stored on a distribution

data set which is accessible by the terminal, the outputs can
be selected and viewed at the terminal as required.

134 CH=1

™

The VIEW program formats a list of output report titles
(often called a menu) and allows the user to page through the
list and select a report to be viewed. Thus users not
familiar with NIPS TP and the QUIP query language can choose
an output from the menu and page through it with a few simple
commands. This capability makes the data accessible to the
decision making personnel. In addition, response is almost
instantaneous, since no data base search is required.

Use of distribution data sets and VIEW should be con-
sidered as an alternative to producing batch reports which
are required as reference material by multiple users. The
convenience and flexiblity of terminal access using VIEW, as
well as the savings in printing and distribution costs can,
significantly improve operating efficiency.

The use of the VIEW capability is discussed further in
section 2.7 of CSM UM 15-74, Volume VI - NIPS Terminal
Processing (TP).

134.1 CH=1

(€ 30 1) IIXE pue Ind ‘IID YITM SO®IISIUI TOHOD ¢ 2INBTJ

—
|
]
O
| i 1
|
h , L] {
I | | (R SUEERGRERR!
* _ 1 EENE SERERNRER
I | 'WP! ! I I
NILLOD TLlon 21y I 1Qn I
, . IRRNRRRRNN
RURNERENRENARENRRNRRRRRREEREIN 1
{ BEEEAREEEBEE INERR NN IR
! eeuﬁazqmb_ wo;uqdoﬂ_rd.w nq.u:ﬁwx 1 11 g
| PN P30LS 3489 ..a.zs: ST T |
m ! o)
- Aﬁ , jiﬂ LI ,%.ﬁr@é |
! | ERRRREE =mtowr“_,: wisialL | i} |
f ! __. | (o8]V [l#ll.«»l.ﬁﬁoi.'lf AM, 4“74_
: o | A L O R LAty r..l,l..,i.. 188 500 G0 % 1 R
ESUREANE LLL T T amtieod o9 g 11 |
" ¢ - - ! 4 . \.»I;.l. e - —— Bt g $. !
[ERNRERRURENRRRARRENEREIND ”
_ EERREEARSNNARRERRNENERERN , TN FN TSN |
i LTI Issawaay] o 15 | BRI
! LS WYddd WodS mamw [lod| 439 (7DP 5 = B
! g 4; T IREREEEE NEEEEEE 13941
111 T 39| 903 PrRwEREEN T eRPPL P
B:T.F«... bl S 0 R B A R B B R Aad TR A Y T " :ﬂﬂ*: u..#...o.::_u.,.,..: .!2!:.!2“: eoferf o for-..Qh’. cafvz|eefezfrafoe forfmferforist (ot :T. wijorje{elefefslele]z]y

(¢ 30) IIXA pue IAd ‘39 Y3ITM 20eJISIUI TOLO0D ‘0f oInbTg

-

190

T TITITT

| arg

Pl 1 121dID

_

1 ; Vel W M

EEERRERARARRRER il _ BRER! ST 3193 |
Ll NERENNENESENVERAR T ENR TR EEIaN, ST LIl

i 110G 101 9 dS1LAININS T3] L -IsDIA IR EPED 1AW

~ ojd FETPA

EPBEREECBESCEESEEINE ﬁ JALRITTOIA [T e
RRRNERN | AN L6 O 1oL 1SS [[] oI oRT R TS, 1|
EEAERA i ! 1 i] | 1 = I ! | »L:D&MFPOH .ﬁq.h.ﬁ..:@

1 | (NYR2[35H 3

SS¥d ST/ h[7] | v 8

[IAlgLon ST B
UUEPCREEL 4 M (19)9"[S[s ¥ 910 W _u,>,m~" FM

L] i @El._.mm»_ 1[4 100 L9k " |k HiS|

0|0 Q[2/HH| } InNg

NN /01915 JUE

GHEBERIENIER

RH| L3/ €T T i)

Old| |12 (1@ 2] 1

ABCEEEJSEE]

1 .|1|n[d]| [¥|o el Te) i| oo .| 12lt]L
wo.PPA\r...o.\:::::32!383!:33332ﬁ.ﬂ»mza»}:325:2?3:..--.Li!kcnmn::..nH—yilﬁaﬂﬁzzz:E:-.:!:::::a_-h

It is possible to write a COBOL (or FORTRAN or PL/1)
interface routine to perform interterminal output. Needed
parameters are the terminal name, and an 0l record layout
that begins with 02 USTADDR PICTURE S$99999 COMPUTATIONAL.
This will leave room to store the UST address. The output
data must follow as the second field.

201 CH-1

e

INDEX

ACCESS METHOD

ACCESS METHQODS SPACE

ACTIGON CODE

ACTICN STATEMENTS IN RIT
AD-HCC QUERY

ADD (CP)

ALPHA FIELPD

ALPHA MQOCC

ALPHA TO NUMERIC MOVE (QOP)
ALPHA/NUMER COMPARE (0OP)
ALPHABETIC FLD INITIALIZATION
ALPHARET IC LITERALS
ALPHABET IC SUFFIXING IN RIT
ANY MNDIFER

APPLICATION PROGRAM
ARITHMETIC OPERATIONS IN RIT
ASSFMBLY LISTING OF FM LOGIC
BACKUP FILE

BACKUP INCFX DATA SET

BATCH

B0AM
BETWEEN (BT) IN SKELETON QUERY

BETWFEN RECORDS MNDIFIER
BRINARY FIELR INITIAL IZATION
BINARY MODE

BLANK DECIMAL FIELD (0OP)
BLAST

BLCL

BLOL ENTRIFS
BLKSIZFE

BLOCK CF RIT CODRE
BLOCK SIZE

BOOL PARAMETER IN RIT
BOOLEAN LOGIC IN RIT
BPAM

BREAKL INES SECTION (OP)
CANDICATE LIST

CARD TRANSACTINN
CATALNGED PROCEDURES
CHANGE LCGIC (0P)

203

3.5

Ee2

6.8

6.2
4026242
4030263
5¢1e3
4¢3.2.3
344
4eledel
4e3e2.9
4.3.2.9
4s1e5e1
4030202
4.3.204
4020342
5201
4.3‘2.8
4.1e162
3e2e1e5
3.263
3.202
5.1.3
36203
4.2. 1.2
4e2e2e4
4.3.2.7
4.1.5.1
4eledel
4636249
Sele2
4elele?
6.2

3.5

o1
4036201
Selel
6.1

6.2

6.3

6.5
4e3.2.6
4034246
6.8
4.3.2.6
Jeded
4‘1.4

€
4,3.2.6€

e o
P

.
»

.
—

INDEX

CHANNEL
CIRCLE (CIR) IN SKELETCN QUERY

e o
SN

CLAUSE

CODING CONVENTIONS (FM)
CCLUMN LABEL

COMPACTICN

COMPARE ALPHA/NUMER (OP)
CUOMPILATION OF RIT
COMPILE

COMPILED RFTRIEVAL
CCGMPLETE LCOGIC (OP)
COMPONENT SPACE
COMPRESSION
COMPRESSION/COMPACTION
COIMPUTE (NP)

CCNNDITION CODFS
CONDITION ON ALPHA SUFFIX LINE

.
S

N N = NN W -
e o
~ 0

oW

L
~—

. 0 e o o
NN N r— -
e o .

(W8]

[0 0

CONDIT ICNAL EXECUTINN OF STEP
CUNDITIONAL LAOGIC IN RIT
CONTENT ION, CHANNEL
CONTENTICN, CATA SCT
CCMTENTION, DEVICE

.
N
)

o

*
NN

CONTENTICN,1/0

CONTRCL CARC VERIFICATION (FM)
CONTROL FIELC

COORD FIELD

COCROINATE MODRE

CORE REQUIREMENTS

CORRECT ING IMQ

COUNT

cP-67

CRFEATE CARC PARAMETER (800L)
CENSSING SET BOUNCARIES

JASD

¢ o e o L] s o o e o 0 e o e o e 8 o e o 0 * 0 e 0 e o

L]
W

L]
SNV WUFODO=OWwSNhWwNWPHPDINWNRONLVDWRAWEFEFNNN®
e o & o
H -
L]
—

NN
.
o

DATA CONVERSION

DATA ERRQORS IN RIT

DATA FIELD INITIALIZATION
DATA FILE ANALYSIS

DATA MODE

DATA RECGRD

NATA RECORD LIMITATION ON QDF
DATA RECORD SIZE
DATA REQUIREMENTS

WOoOSLPOWEDPDPWRHRIPWOOOCHLHIFIPTUMANNWHAWWDLDOOOTUVNOODODPIDOODLWORLDDWSLPULULWLWSIEWLWDD2O

—NNNS DTN LWDSO~NDW

e & o 8 & DOE & 8 0 o 0 o 0

CH-1

204

INDEX

DATA SET ALLOCATINN
DATA SET CHARACTERISTICS

"DATA SET CONTENTION

DATA SET LABEL
DATA SET SPACE
DATA SOURCF

DATA TRANSACTION
DATA VAL IDATION

DATE OF UPDATE-INDEX CATA SET
DCR

DECIMAL FIELC BLANK (0OP)
DECIMAL FTELD IMITIALIZATION
DECIMAL MODE

NDEFAULT SPACE ALLOCATINNM
DELETE BYFRE

DELETED SUBSETS

DELETING LOGIC STATEMENT
DESIGN NIPS FILE

DEVICE CCNTENTION

DICT IONARY
DICT IONARY MAINTENANCE UTILITY

ICTIONARY TABLE
DIRECT ACCESS STORAGE DEVICE
NIRECT SUBSET UPDATE
NDIRECTORY BLOCKS
DIRECTORY SPACE
DISK TRANSACTION
DISTRIRUTION CATA SET
DIVIDE OPERATIONS IN RIT
DIVISICN BY ZERO (0OP)

DUPLICATE NAMES ON L IBRARY
EDIT

EOIT MESSAGE QUEUE

EDIT SAMPLE

EFFICIENCY OF FILF UPDATES
EFFICIENT PROCESSING (FM)
EFFICIENT FASP PROCESSING
EJECT STATEMENT

EJECT WITH OVERFLOW LINE
EMQ

ENTER

ERFUOR CORPECTION

205

.
nN

.
N

e o o o
)
NS

CwWHN

S ,r
e o o
~— -0

D e e W WN =N W D) e e
et

o TDe o © 5 & & & o 6 5 o 0 © o o @

e Me
S ZN
e (M e
SECEN
e X ®
—

(@

oMmMLWSEBILIrOSTISTPIOoOLWDLLLOOOLIOWM
.
N

o -

3e2e445

. o o
N S
o o
w WU

e« o o ¢ o 0

e o o o
-~ O @6 o

.
w

VVMH DDLUV DOV WW
~N~

NN WWNPERNRNNNOWOLWWWNE=W=~NN

—ANNEHE=SPONDSNRNNNO S

w
.
N
.
o
*
w

CH-1

- g e

INPEX

ERROR MFESSAGE, DATA (0OP)
ERRCR RETURN, SUBROUTINE (OP)
EXCEPT ION RANGE UPDATF
EXCEPTICN UPDATE

EXCEPTION VS SUBSET EXCEPTION
EXPLICIT PARFNTHESIS

EXTRACT OF FILE

EXTRACT OF FILE

FFT AND LeSeyOMIT FROM QOF
FIELD SIZE

FILE (QuUIP)

FIL® ANALYSIS STATISTICS

FILE BACKUP

FILE CCNTROL SECTION (OP)
FILE DESIGN

FILE GEMERATION

FILE LIBRARY

FILE LIBRARY UTILIZATION (FM)
FILE LIRRARY UTILIZATION (OP)
FILE ORGANIZATION

FILE SEARCH WITH LIMIT (QUIP)
FILE SFARCH WITH LIMIT (RASP)
FILE SEGMENTATION

FELE STZE

FILE UPDATE

FILE UPDATE EFFICIENCY

FIND (QUIP)

FIP RECORD

FIXED LITERALS

FIXEC SET

FIXED SET VARIABLF DATA

FM

FM ABENC

FM CODING CONVENTIONS

FM
FM
FM
FM
FM
™
FM
FM
FM

CONTRCL PROCESSING
COMTRCL SPECIFICATIONS
CCNVENTIONS

EFFICIENT PROCESSING
LANGUAGE CHARACTFRIESTICS
OVERVIEW

PARM (OPTIONS

PROC OVERRIDES

PROCESS BLOCK SIZE

206

® o 9 o o o ° o o o
WS Nr =00

L]

—f e~ WWWWwWNN

WAV EDNNPRODNNN === Ww

L] . . ¢ o e o o []] . . L L]
e 0

N -
. o
— -\

L] L]) e o .
L o o
w —

L] L]
—

NN e = N -

.
N

.
W

o o
NN

« o
.
S

S5 DmNWMNWNN - -~ -
L]
S - -
L]
wm

S L ENLL DD DD P WLWDDDD LUV ULWSPITVUVWDREVNWSITWWSIWEALDWDEDIDDDD O
L]
N

P et Q) e e e et e e e DD R B N D N = S DN D N0 =N

—p
.
N

CH-1

INDEX

FMo.INSTRAN

FM.PSTRAN

FMNDATA CD

FMS CCNTPOL STATEMENT
FMSAMOUT DP

FOR (QUIP)

FORMAT CONTROL IN RIT

FORMAT CCNTROL WITH COMPLETFE
FORMAT CCNTROL WITH QOVERFLOW
FR OVEPRPVIEW

FRAGMENTATION

L S T S S I
. ¢
W -

LA TN AT SR S S S

$ o & o ¢ o 0 0 o
o o oo

~0o~
L]
P

FREF CORE

L]
W

FREQUENCY OF RETRIEVAL
FS OVERVIFW

£S STEP 2

FURTHFR

FUTURE FILE ODPERATIONS
GFN=

GENERATION

GOTO

HISTORY FILFE

HY PHEN OPTION

SNV WOCRUVOCOWLNSSDSRSIDDS
.

e o o o o o o 0 o o
.
W
°
N

NS WN U ~NNUNWNRN WW WD e e e e

e o o o o
S =N~

. L] L] L] L]
L e »
o -
L
—

&S -

I/C (TERMINAL)

I/8 BUFFER SPACE
I/0 BUFFERS

I70 CPERATIONS

[ERCOPY

IFFBR14

IFHMCVE

IF (QUIP)

IF CHANGE LOGIC IN RIT
[F COMPLETL LOGIC IN RIT
I[F LOGIC (3P)

IFD

oo
PRy
w N

IMPLISD ANY LOGIC
IMPLIED PARENTHESIS

- N W

ImMQ

INDEX CLAUSES
INDEX DATA SFT

NN WP LW WS O aN -

WBWWIVVMUVDDILIDWLLDLDOOOCTOWLWLEAVVLWWLWW S WS W
L]
S WWWN = WW W~ NN N -

L N

L]
w

CH~1

207

INDEX

INDEX DATA SET
INDEX DATA SET CONTENTION
INCEX DATA SET MAINTENANCE

INDEX DATA SET SIZE

INCEX DESCRIPTOR RECORC
INDEX FIELD

INCEX FILE

INDEX MAINTENANCE

INDEX PROCESSING

INDEX SPECIFICATION UTILITY

IMDEX TRACK

INDEX VALUE

INDEXED SCQUENTIAL
INDEXING

INDEXING PARAMETER
INDIRECT ADDRESSING
INDIRECT ACDRESSING (FM)
INPUT CONVERSION

INPUT MESSAGE QUEUE
INQUIRY PROCESSING
INTERFILE OUTPUT
INTERSET COMMUNICATICN
INTERSET LOGIC
INTRASET COMMUNICATION
ISAM

ISAM EFFICIENCY

ISAM FILE PAD RECQORDS
ISAM FILE PROCESSING
ISAM CRGANIZATION DESIRABILITY
ISAM OVERFLOW

ISAM SPACE ALLOCATION
ISAM TRANSACTION

ISAM UPDATE

ISAM/LIMIT RESTRICTIONS
IXFMKSD

JCL CVERRIDES IN FM
KEYWORD

KEYWORD ANALYSIS

208

v W\
e o
——
NN

3e2e401

.
o

e o
NN N
® 2 o 0 o o o

WwHdPLWwLww
W= WwWwd
e o
(SN]

HHw

~ O

s o
w &

LI]
LA SV

e AW =N DWW W= W
L]
N

L]
wn

NN -
e 0o o
N

L[]
—

L]
—
L]
wm

e & & o o o 0o 6 o 6 o oo e ¢ & ¢ 9 o o 0o o o o e o 8

RN NN NN NNNNNENNDN

DLW DDLUV LWELEALVITIDULVLLEDLLWWOG WWL
e o o o
e 0 ¢ o o
SHE-N D
¢ o
-

CH-1

INDEX

KEYWCRD ANALYSIS

KEYWORD ANALYSIS PROGRAM
KEYWORC INDEX

KEYWORC INDEXING

KEYWCRD TABLES

LABEL

LANGUAGE CHARACTERISTICS
LANGUAGE SELECTION
LARGEST RECORD SIZE
LIBRARY

LIBRARY ALLOCATION (NEW)
LIBRARY REORGANIZATION
LIBRARY SPACE ALLOCATICN
LIBRARY UTILIZATION
LTBRARY UTILIZATION (FM)
LIBRARY UTILIZATION (0OP)
LIBRARY UTILIZATION (RASP)
LIMIT

LIMIT (QUIP)
LIMIT (RASP)

LIST (RASP)

LIST (FM)

LIST PARAMETER (0OP)
LITERALS IN RIT
LOAD (QuIP)

LOADR MOODULES

LOGIC STATFMENT CONTROL
LOGIC STATEMENT REPLACEMENT
LOGIC STATEMENT SEQUENCF
LOGICAL RECORD

LOGOFF

LOGON

MASTER FILE (SUBSET OF FOR TP)
MATRIX

MAXIMUM PROCESS BLOCK SIZF®
MAXIMUM SUBSET SIZE

MCS INSTRUCTION

MERGED FILF® OUTPUT

MERGED FILE RETRIEVAL/OUTPUT
MESSAGFE TO OPERATOR

209

WRNNPDNNN
e & o o o o
WaHadPWS S

L]
& =\

e o & o o o o
.
W
.
N

Ve © ¢ & 0 0 0 0 o o

W) =t et o et et

e ODe o o o

e & o o 0 o @
NN W D -

e & @& 9 o o ©° o 0 0 0 6 0 % Me ¢ s o

PN e N = = e N = N = S e N 22 et e et e

L]
w

WNN
.
—

MBPLUSIPPLULNVVWLEDIPODDI DL VULLLPEPLDDLOOCOOCTDDOOWWWWWW
e s O

e © 0 o o T & 0 0 o 0 o o

NWS e DWrHENNNDWFEEENDIDWWEFENENDSE D= WNN DN WRE RN -

e & & 5 o (TI® o o o ¢ o ¢ o o

NN ZNEee N~ S DS

INDEX

MODE

MOUNT DISK PACK

MOVE (0OP)

MOVE ALPHA TO NUMERIC (0P)
MOVE SPECIFICATIONS

MOVE STATEMENT IN RIT

MUL (OP)

MULTIPLE TPRANSACTION SQURCES
MULTISTEP JOB

MULTIVCLUME SORT

MVFE

MV R

NAME OF RIT

NEW FILE LANGUAGE CAPABILITIES
NfWw RECORD OVERFLOW

NEW TRANSACTION FIELCS

NFL CAPABILITIES

NIPS FILE LIBRARY

NIPSCUMP

NOFL (RASP)

NOPAD

NN =N = DD
e o
- N

e o & & & & °o 0 B e & o 0 e o O & o
e o & o & o o

L]
Pl

L]

Pt

.
N

NOROS

NUMER FIELD

NUMER/ ALPHA COMPARE (OP)
NUMERIC LITERALS

OM CAPABILITIES

OM KEYWCRD DATA VAL IDATION
oOMIT

e o o
NN O

>
(@]

OMIT FFT AND LS FROM QOF
OMIT LOGIC

OMIT STATEMENT POSITIONING
MQ

o o 0
S W

o
E

CNLINE

NN N ZWWNND =S =N NWwdDNWe~ND

® o 0 0 o ¢ & o o TN © © 0 6 0 & ¢ o o © o 0o & 0o ¢ ¢ o 0 o

op

OP OVERVIEW

0P PARM QOPTIONS

CPERATING SYSTEM

ORDINARY MAINTENANCE

CS PERFORMANCE

QUTPUT CONTROL SECTIGON (CP)
NUTPUT MESSAGE QUEUE

CUTPUT PROCESSOR

WUOWANNNNNWWUNN O wwd == NN D me s WONONO N~ WWWWWN T

s 0 o e o 0 [] L] e o e o T . e 0 o o e o o e o

L]
—
L]
~N

.
w
.

~N

SdusLboosOcsNNISBVDLLLLVLVDDDRPLWIPSHIITDVLVIVLISI STV DLWV
- N

L]

[

WNW® -

210
CH-1

INDEX

QUTPUT STATEMENT (QUIP)
JQVERFLOW

OVERFLOW (ISAM)

OVERFLOW TRACK

OVERLAP (OVP)IN SKELETON QUFRY
OVERLAP (OVP)IN SKELETON QUERY
PAD RECORDS

PAC RECCKOS AND LIMIT

PAGING (TP)

PARAM KEYWNRE (OP)

PARENTHESES IN ARITHMETIC (0OP)
PARENTHESES IN OP CONDITION
PARM OPTIONS

PARM OPTINNS (FM)

PARM OPTIONS (0OP)

PARM OPTIONS (RASP)

PARM=NOPAD (UTBLDISM)

PARTIAL FIELD

PARTIAL FIELD CONVERTEL VALUE
PARTIAL FIELD NOTATION (QUIP)
PAPTIAL FIFLD-FOR STMT (QUIP)
PART IAL FIELD-OUTPUT IF (QUIP)
PARTITION SIZE

PDS NIRECTORY

PERCENT FILF RETRIEVED
PERCENT FILE UPDATED
PERCENT FILE UPDATED

PERICN (QUIP)

PERIODIC DATA (FM)

PC2I0ODIC OATA IN BREAKLINES
PFRICCIC DATA IN LINE CONDITN
PEPIDCIC DATA ON LINE ALPHA
PERIODIC DATA RETRIEVAL
PERPIODIC DATA WITH SPACE
PFPICOIC LITERALS IN RIT
PERIODIC SET

PICTURE

POCL CAPABILITIES

e ——— —— =

211

SPWSBILDDIDIT DT VLAACUIIDIWDDDRDD22DULDULLPIDLLLWLWDADOODLLWWD

3 6 o © & 0 ° o 0 o 0 0 0 0 0 0
e lWWNWWWESENNNFNVDSDPWOUANOUFRNONWWWONN~=N==NNNAONNDNN= NN D

¢ o o o o o e & o o o 9 o e o e & 0 o & 0o o & 0 0o 0 0 o o o * & 0

L I e o 0 0
N = pd et pt puo
* o o o

- nWwnN

NANNRNNN NN D ()R b e e N\

LWWNNWNNN WY -W

L] e o e o o L

= WwWNMNWOD ™

NN W

S~

S =N - SN

o>

NN

.
wn

L]
ot

L]
—

CH-1

INDEX
PRESEQUENCED TRANSACTICNS 4eleleb
PRIME SPACE 3.2.1.5
PRINT SECYION (OP) 4.3.2.1
PRINT SUPPRESSION (OP) 403.2.3
PRINT SUPPRESSION VARIABLE SET 4e3.2.5
PRINTING VARIABLE FIELDS 4034245
PRINTING VARIABLE SETS 4434245
PROCESS BLOCK APPENDIX C
6.2
PPOCESS BLOCK SIZE 3.4.2
3.5
PROCESSING BLOCK SIZE (FM) 4ele3.2
PROCESSING OPTIONS (FM) 4e.1.3
PROCESSING TIME LIMITATIONS FM 4ele3e2
PROGRAM RFSICENCE IN CORE 6.8
PUNCH/TAPE SECTION (OP) 4e3.2.1
PUNCTUAT ION (QUIP) 4abal
PURGE 3.4.1
PURGE UNNEEOED SUBSETS 6.2
QDF CONTENTS 4e2+2.2
QIsam 6.8
QRT CONTENT 4024242
QRT/QDF USER NAMES 4e2.2.3
QRTSP 6.1
QS AM €.8
QUALIFIFD DATA FILE 402.242
QUALIFIED CATA SET NAME S5elal
QUALIFIED RECNRD TABLE 4024242
QUERY (QUIP) 4.441
QUERY PROCESSING, PARALLEL 5012
QUERY PRCCESSING, SERITAL 5.1.2
QUICK INQUIRY PROCESSOR 444
QuUIP 34242
4.4
5181
QUIP RETRIEVAL hebe2
2ANGE 4ele3.2
RANGE UPCATF 4sle3.1
RANGE UPCATES W/0 TRANSACTIONS 4.1.3.1
RANGE UPDATES WITH TRANSACTION 4ele3.l
RASP 4.2
RASP ANSWER FILE 4024242
RASP CCNTROL MODULE 4e20201
RASP FILE MODULE 4e2.2.1
RASP LAMGUAGE CHARACTERISTICS 4e2.2
RASP OVERVIEW 264
RACP PROCESSING PRACTICES 4.2.1
PASP RETRIEVAL LOAD MODULES 424241
RASP SCURCFE STATEMENTS MODULE 4.20201

212
CH-1
A ISR e SR
e

i INDEX

RASP SPACT PEQUIREMENTS
RASP/OP
f RASP/OP ANSWFR ENTRY RECORD
, RASP/OP INTERFACE
READ/WRITE HFADS
RECFM
RECORD CHANGE TESTING
RFCORD CONTROL GROUP
RECORD COMTROL GROUP
RECORD CCNTROL GROUP CHAMGE
PECORD IC RETRIEVAL
A RECORD PROCFSSING (OP)
RECORD SIZE

RECSIN

RECUCT ION OF FILE SEARCH
REGION SIZE
PFGION/PARTITION SIZE
RELATIONAL OPERATORS (QUIP)
RELATICNAL NPERATDRS (RASP)
REMAINDER (0P)

KEMARKS

REMOTE J0OB ENTRY

REMOTE JOR ENTRY

REORGANIZFE

RECRGANIZE INCEX DATA SET
REPLACEABLE OPFRANDS
RFPLACEABL® VARIABLES
REPLACING LOGIC STATEMENT
REP RECCRD

RESET (0OP)

RESIDENT ROUT INES

RESPONSF

RESPCNSE TIMF, TP
RESTCRE FILE TO DISK
RETRIEVAL

RETRIEVAL (QUIP)

RETRIEVAL - RECORD ID
RETRIEVAL ANC SORT PROCESSOR
RETRIEVAL IN QUIP VS RASP
RETRIEVAL NAMES

RETRIEVAL STATEMENT (QUIP)
RIT COCE BLOCK

RIT COCE SECTIONS

RIT COMPILATION

213

mNN
)
N

“
- N
e o
@
wm

SH -

L
@ =

wm

NN === Wr~NNN
L]
—

WNNNN

CNWN =~ WN
°
w

—

S PPV ULULVVLLLVLLWOODRSITIDITULWLULVVIS DIV LITVIDULLEOCOSIDDWD

WWWWEHENENNDENNNAONEFNNCCWN=NNNRONEENWSEENVNN =N WNRN =N =~ ONNN -

e ® o o o
NN =N e

[

INDEX

RIT EXECUTION
RIT NAME SPECIFICATION
RJE

ROAER RECORD
ROLL ING
ROS

ROS (RASP) ,
ROS (DP)
RUN OPTIMIZATION STATISTICS

SAM

SAM TRANSACTION

SAM EFFICIENCY

SAM FILE SEGMENTATION

SAM CRGANIZATION DESIRABILITY
SAM UPDATE

SAMOUT=

SAVE AREAS FOR CONDITIONS
SAVE SECTION (OP)

SCAN PRCCESSOR

SCAN ROUTINF

SCAN SUBROUTINE

SCRATCHING IMQ

SEARCH OF FILE WITH LIMIT (QU)
SFARCH OF FILE WITH LIMIT (RA)
SECONDARY INDEXING

SECONDARY INDEXING-ACVANTACES
SECCNDARY INDEXING-COSTS
SEGMENT CONTROL RECORC

SELECT

SEQUENCE OF SUBSETS
SEFQUENTIAL

SET ABSENCE

SET SIZE

SIGNIFICANT CIGITS (OP)
SIZE

SIZE COF RIT BLOCK
SKELETON QUERIES (RASP)
SKELETON QUERY (QUIP)

214

SV VWISTULIIPVIPLLLLULDIDLVWSSVVLVLWSADDDP DLWV WODWLWLPDIDOCPUVWW DUV S &

L] o o o e @ & o o e & & o o » » » . e o 0 e o o e o o o e o L e

SR WL WENNEE=ENRNNNNERNONNNNSERENNNNNWWEEERNNEENRNNNEARWRN =N N W W

e o & o o o o e o o o o o e o o e o L] L] [] L] [] e o e & o o [] °

¢ o

NS Wr=N
L]

ot

— -
.

NWWE A=, WWD2UFENNWSDIITDINNNDPTNOND =D~
.

N - N

——

* o o e e o o o O
W O

~N oW ~N ~N

wn

N

(SN

v

w N o

[0}

W N -

L]
r—

INDEX

SKELETON RETRIEVAL SUBSTITU
SODA

SOCA RETRIEVAL

SORT

SORT (QUIP)

SORT KEY

SORT SPACE

SORTIN

SORT ING PERIODIC SETS
SORTKEY

SORTOUT

SORTSP

SORTWKO1

SOURCE DIRECT (QUIP)
SOURCE LIBRARY

SOURCE RETRIEVAL (QUIP)
SOURCLIB DO

SPACE ALLOCATION

SPACFE REQUIREMENTS

SPACE REQUIREMENTS—INDEX DATA
SPACE STATEMENT

SPACE WITH COMPLETE LOGIC
SPACE WITH LINE LEVEL ALPHA
SPACE WITH OVERFLOW LINE
STANCARD LABELS

START

STASH AREA

STAT EMENT CONTINUATION-FM
STAT EMENT CONTINUATICON-FR
STATEMENT CONTINUATICON-FS
STATEMENT CONTINUAT ION-OP
STAT EMENT CONTINUATICN-QUIP
STAT EMENT CONTINUATION-RASP
STATEMENT CONTINUATION-SODA
STAT EMENT CONTINUATION-TABGE
STATISTICS

STATISTICS RECORD

STOPWORD TABLE

STCRED RETRIEVAL NAMING
STCRED RETRIEVAL USAGE
STORED TP QUERIES
STRUCTURED CODE (FM)
SUR (OP)

SUBRFILE

215

L]
-

e o ¢ o Ve ¢ o o

oL WOCCTPOOSHOPOOCOSDDIOOSDPDPIT VLS
L]
LWDWWWWWNE=TO~=debeNNOOCCNDINNNON

50201
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDI X
APPENDIX
APPENDI X
APPENDI X
APPENDIX
3.5
APPENDIX C

o~NdSOV-NW

P> D>D>>»D>0O
.

¢ o o o o
r—_mwN

. o
w s

WHRIULMSDDULUWWW
e © o o © o 0 0 & o
SWer=NNNONNON
e ® o ¢ * o o 0 0 o
—_Nwr=~N S W

CH-1

INDEX

SUBFILE
SUBROUTINE ERROR RETURN
SUBROUTINE ROLLING

(orP)

SUBRTN CCNVERSION IN MOVE (QP)
SUBSCAN :

SUBSET CCNTROL FIELC

SUBSET CCUNT

SUBSET EXCEPTION UPDATE

SUBSET OVERFLOW

SUBSET SCANNING

SUBSET SEQUENCE

SUFFIX

SUFFIXING (OP)
SWITCHES (0P)
SYNONYM

SYSTEM ORGANIZATION

TABGEN

TABLE CONVERSION IN MOVE (0OP)
TABLES, ROLLING

TAILOR FILE FOR TP

TAPE TRANSACTION

TCB
TCR
TCP

(CP)

TCP
TCP
TCS

(FM)
(ce)

TCS (OP)
TERMINAL
TERMINAL
TERMINAL

ENTRY LENGTH
CPERATION
PROCESSING
TERMINAL RESPONSE
TERMINAL VS BATCH QUERIES
TEXT RETRIEVAL

TP

T? FILE SIZE

TP 1/0 OPEPATIONS

TP LG

TP MONITOR

215.1

SHEPhPRWDDIEPOOVLELWVM
® % & 5 8 S 8 % " 8 B 0
DN =W WN - W
e o o o o o o o e ¢ o
NWNDWN=WN NP -
¢ o L]
-~ W 0

SR
.
wm

S LwWwwW
e o & o
WWwhN
e & o o
NN S
e o & o
(o B ¥ I EN]
LJ

—

.
W

>
O

® Mme o o o o o

Pt ot et ZZ et et P et 2P e e BN e NN

x
(@]

e 0 Je o ¢ ¢ TTe o
NW=NNWW—=ND W

e o o Mo o

NNNWN ODWENN DWN == 0oN 9

e & ¢ & ¢ Ve & o & Ve o o

(]
—
L]
oS

o o o
N =
e o o o
S WH -

VuuvuuumuuuuUMUUVLLWVMP DDV O0NU
e o o o
NN ==
° o .
N »~ —

CH-1

INDEX

TP RESPONSE TIME

TPRECORD

TRACK CAPACITY

TRANSACTION FIELD MODE
TRANSACTION FORMAT

TRANSACTION SEQUENCE
TRANSACTION SOURCES
TRANSACTION SPACE

TRANSACT IONS

UNIQUE VALUES INDEX FIELD
UNIVERSAL MATCH CHARACTER-QUIP
UNUSED PRIME AREA IN ISAM FILE
UPDATE

UPDATE METHODS

215.2

- N

e o
L]
—

dwsrdbuwosHbrdbwpouvnm
e o o © ¢ o o o & & 0 06 0 o
PN e NN = e e) e e N
e & o & o o e o o »
WD WD SN
e o o o L[] []

w

N - W &
L]
[

